# **Installation and Configuration Guide**

# **AVAYA P334T-ML**

# STACKABLE SWITCH

**SOFTWARE VERSION 4.5** 



# Contents

| Safety Information                         | 1     |
|--------------------------------------------|-------|
| FCC Notice                                 |       |
| Conventions Used in the Documentation      |       |
| CLI Conventions                            | ]     |
| Notes, Cautions, and Warnings              |       |
| Warranty                                   |       |
| Notice                                     |       |
| Avaya Support                              | . III |
| Introduction                               |       |
| About the P334T-ML                         |       |
| Avaya P334T-ML Features                    |       |
| Layer 3 Features P330-ML                   | 2     |
| Network Management and Monitoring          |       |
| Device Manager (Embedded Web)              | 2     |
| Command Line Interface (CLI)               |       |
| Avaya Integrated Manager                   |       |
| Port Mirroring                             | 3     |
| SMON                                       | 3     |
| Fans, Power Supply, and BUPS-ML Monitoring | 4     |
| Avaya P330 Standards Supported             | 5     |
| IEEE                                       |       |
| IETF - Layer 2                             |       |
| IETF - Layer 3                             |       |
| IETF - Network Monitoring                  |       |
| P334T-ML Switch                            |       |
| Physical                                   |       |
| Power Requirements                         |       |
| Environmental                              |       |
| Safety                                     |       |
| Safety - AC Version                        |       |
| Safety - DC Version                        |       |
| EMC Emissions                              |       |
| Emissions                                  |       |
| Immunity                                   |       |
| Interfaces                                 |       |
| Basic MTBF                                 |       |
| Stacking Sub-module                        |       |
| Basic MTBF                                 | 9     |
|                                            |       |

| Approved SFF/SFP GBIC Transceivers                       | 10 |
|----------------------------------------------------------|----|
| Safety Information                                       | 10 |
| Laser Classification                                     | 10 |
| Usage Restriction                                        | 10 |
| Installation                                             | 11 |
| Installing and Removing a SFF/SFP GBIC Transceiver .     | 11 |
| Specifications                                           | 11 |
| LX Transceiver                                           | 11 |
| SX Transceiver                                           | 11 |
| Agency Approval                                          |    |
| Gigabit Fiber Optic Cabling                              | 12 |
| Console Pin Assignments                                  | 13 |
| Required Tools                                           | 17 |
| Site Preparation                                         |    |
| Rack Mounting (Optional)                                 |    |
| Installing the X330STK-ML Stacking Sub-Module (Optional) | 20 |
| Connecting Stacked Switches                              |    |
| To connect stacked switches:                             |    |
| Making Connections to Network Equipment                  | 23 |
| Prerequisites                                            |    |
| Connecting Cables to Network Equipment                   |    |
| Powering On – Avaya P330 Module AC                       |    |
| Powering On – Avaya P330 Switch DC                       |    |
| Post-Installation                                        |    |
| Avaya P334T-ML Front Panel                               |    |
| Avaya P334T-ML Back Panel                                | 31 |
| BUPS-ML Input Connector                                  |    |
| Establishing a Serial Connection                         |    |
| Configuring the Terminal Serial Port Parameters          | 33 |
| Connecting a Terminal to the Avaya P330 Serial port      |    |
| P330 Sessions                                            |    |
| Assigning P330's IP Stack Address                        |    |
| Establishing a Telnet Connection                         | 35 |
| Establishing an SSH Connection                           | 35 |
| Establishing a Modem (PPP) Connection with the P330      |    |
| Overview                                                 |    |
| Connecting a Modem to the Console Port                   |    |
| Security Levels                                          |    |
| Entering the Supervisor Level                            |    |
| Defining new local users                                 |    |
| Exiting the Supervisor Level                             |    |
| Entering the CLI                                         |    |
| Introduction                                             |    |
| SNMP Support                                             | 39 |

| Introduction to SNMP                                       |      |
|------------------------------------------------------------|------|
| SNMP Versions                                              |      |
| Managers and Agents                                        |      |
| Manager/Agent Communication                                |      |
| SNMPv1                                                     |      |
| SNMPv2c                                                    |      |
| SNMPv3                                                     |      |
| SNMP Commands                                              |      |
| SSH Protocol Support                                       |      |
| Introduction to SSH                                        |      |
| SSH Commands                                               |      |
| SCP Protocol Support                                       |      |
| RADIUS                                                     |      |
| Introduction to RADIUS                                     | 48   |
| Radius Commands                                            | 49   |
| Telnet Client Support                                      | . 50 |
| Introduction to Telnet                                     | 50   |
| Telnet Commands                                            | 51   |
| Recovery Password                                          | . 51 |
| Introduction                                               | 51   |
| Recovery Password Commands                                 | 51   |
| Allowed Managers                                           |      |
| Allowed Managers Introduction                              |      |
| Allowed Managers CLI Commands                              | 52   |
| Allowed Protocols                                          |      |
| Allowed Protocols Introduction                             |      |
| Allowed Protocols CLI Commands                             |      |
| Configuring the Switch                                     |      |
| Avaya P330 Default Settings                                |      |
| Introduction                                               |      |
| Basic Switch Configuration                                 |      |
| System Parameter Configuration                             |      |
| Identifying the system                                     |      |
| Operating parameters                                       |      |
| Network Time Acquiring Protocols Parameter Configuration   |      |
| Uploading and Downloading Device Configurations and Images |      |
| Layer 2 Configuration File                                 |      |
| Layer 3 Configuration File                                 | 66   |
| System Logging                                             | 68   |
| System Logging Introduction                                | . 68 |
| System Logging Messages                                    |      |
| Sinks                                                      |      |
| Applications                                               |      |
|                                                            |      |
| Syslog Servers                                             | 70   |

| Syslog Configuration CLI Commands               | 71 |
|-------------------------------------------------|----|
| Monitoring CPU Utilization                      |    |
| Overview                                        |    |
| Ethernet                                        | 76 |
| Fast Ethernet                                   | 76 |
| Gigabit Ethernet                                | 76 |
| Configuring Ethernet Parameters                 | 76 |
| Auto-Negotiation                                | 76 |
| Full-Duplex/Half-Duplex                         | 76 |
| Speed                                           | 77 |
| Flow Control                                    |    |
| Priority                                        | 77 |
| MAC Address                                     | 78 |
| CAM Table                                       | 78 |
| Ethernet Configuration CLI Commands             | 79 |
| Ethernet Implementation in the Avaya P334T-ML   | 80 |
| VLAN Configuration                              |    |
| VLAN Overview                                   | 81 |
| VLAN Tagging                                    | 82 |
| Multi VLAN Binding                              |    |
| Automatic VLAN Learning                         | 84 |
| Ingress VLAN Security                           | 84 |
| VLAN CLI Commands                               | 84 |
| VLAN Implementation in the Avaya P334T-ML       | 85 |
| Port Based Network Access Control (PBNAC)       | 86 |
| How "Port Based" Authentication Works           | 86 |
| PBNAC Implementation in the P330 Family         | 86 |
| Configuring the P330 for PBNAC                  | 87 |
| PBNAC CLI Commands                              |    |
| Spanning Tree Protocol                          | 90 |
| Overview                                        | 90 |
| Spanning Tree Protocol                          | 90 |
| Spanning Tree per Port                          | 90 |
| Rapid Spanning Tree Protocol (RSTP)             | 91 |
| About the 802.1w Standard                       |    |
| Port Roles                                      | 91 |
| Spanning Tree Implementation in the P330 Family | 92 |
| Spanning Tree Protocol CLI Commands             | 93 |
| MAC Security                                    |    |
| MAC Security Implementation in P330             | 95 |
| MAC Security CLI Commands                       |    |
| MAC Aging                                       |    |
| Overview                                        |    |
| Configuring the P330 for MAC Aging              |    |

| MAC Aging CLI Commands                                   | 97  |
|----------------------------------------------------------|-----|
| LAG                                                      | 98  |
| LAG Overview                                             | 98  |
| LAG CLI Commands                                         | 98  |
| LAG Implementation in the Avaya P330 Family of Products. | 99  |
| Port Redundancy                                          | 100 |
| Port Redundancy Operation                                | 100 |
| Intermodule Port Redundancy                              | 101 |
| Port Redundancy CLI Commands                             | 101 |
| IP Multicast Filtering                                   | 103 |
| Overview                                                 |     |
| IP Multicast CLI Commands                                | 104 |
| IP Multicast Implementation in the Avaya P334T-ML        | 104 |
| RMON                                                     | 105 |
| RMON Overview                                            | 105 |
| RMON CLI Commands                                        | 105 |
| SMON                                                     | 107 |
| SMON Overview                                            | 107 |
| Port Mirroring Configuration                             | 108 |
| Port Mirroring Overview                                  | 108 |
| Port Mirroring CLI commands                              | 108 |
| Port Mirroring Constraints                               |     |
| Multilayer Policy                                        | 109 |
| About Multilayer Policy                                  | 109 |
| Access Lists                                             | 109 |
| DSCP-to-COS Maps                                         | 110 |
| Trust Modes                                              | 110 |
| Multilayer Policy Implementation in the P334T-ML         | 110 |
| Configuring the P334T-ML for Multilayer Policy           | 111 |
| Configuration Requirements                               |     |
| Configuration File Management                            | 111 |
| Multilayer Policy CLI Commands                           | 112 |
| Weighted Queuing                                         | 114 |
| Implementation of Weighted Queuing in the P330-ML        | 114 |
| Weighted Queuing CLI Commands                            |     |
| Port Classification                                      | 115 |
| Overview                                                 | 115 |
| Port Classification CLI Commands                         |     |
| Stack Redundancy                                         | 116 |
| Stack Health                                             |     |
| Overview                                                 | 116 |
| Implementation of Stack Health in the P330 Family        | 116 |
| Stack Health CLI Commands                                |     |
| Introduction                                             | 119 |

| What is Routing?                                         | 119       |
|----------------------------------------------------------|-----------|
| Routing Configuration                                    |           |
| Forwarding                                               |           |
| Multinetting (Multiple Subnets per VLAN)                 |           |
| IP Configuration                                         |           |
| IP Configuration CLI Commands                            |           |
| Assigning Initial Router Parameters                      |           |
| Obtaining and Activating a License Key                   | 124       |
| Obtaining a Routing License Key                          | 125       |
| Activating a Routing License Key                         |           |
| License Key CLI Commands                                 |           |
| RIP (Routing Interchange Protocol) Configuration         | 129       |
| RIP Overview                                             |           |
| RIP2                                                     | 130       |
| RIP CLI Commands                                         | 130       |
| OSPF (Open Shortest Path First) Configuration            | 132       |
| OSPF Overview                                            |           |
| OSPF CLI Commands                                        | 133       |
| Static Routing Configuration                             | 134       |
| Static Routing Overview                                  |           |
| Static Routing Configuration CLI Commands                |           |
| Route Preferences                                        |           |
| Route Redistribution                                     | 136       |
| Route Redistribution Commands                            | 136       |
| ARP (Address Resolution Protocol) Table Configuration    | 137       |
| ARP Overview                                             |           |
| The ARP Table                                            | 138       |
| ARP CLI Commands                                         | 138       |
| BOOTP/DHCP (Dynamic Host Configuration Protocol) Relay C | onfigura- |
| tion                                                     |           |
| BOOTP/DHCP Overview                                      | 139       |
| BOOTP                                                    | 139       |
| DHCP                                                     | 139       |
| DHCP/BOOTP Relay                                         |           |
| BOOTP/DHCP CLI Commands                                  |           |
| NetBIOS Re-broadcast Configuration                       | 141       |
| NetBIOS Overview                                         |           |
| NetBIOS Re-broadcast Configuration CLI Commands          | 141       |
| VRRP (Virtual Router Redundancy Protocol) Configuration  |           |
| VRRP Overview                                            | 142       |
| VRRP Configuration Example 1                             | 143       |
| Case#1                                                   | 143       |
| Case #2                                                  |           |
| VRRP CLI Commands                                        |           |

| SRRP Configuration                                        | 146 |
|-----------------------------------------------------------|-----|
| SRRP Overview                                             |     |
| SRRP Configuration Example                                | 146 |
| SRRP CLI Commands                                         | 147 |
| Policy Configuration                                      | 148 |
| Policy Configuration Overview                             | 148 |
| Policy Configuration CLI Commands                         | 148 |
| Policy Configuration Example                              | 150 |
| Policy Configuration Example                              | 151 |
| IP Fragmentation and Reassembly                           | 152 |
| IP Fragmentation and Reassembly Overview                  | 152 |
| IP Fragmentation/Reassembly CLI Commands                  | 152 |
| Troubleshooting the Installation                          | 155 |
| Introduction                                              | 157 |
| Replacing the Stacking Sub-module                         | 157 |
| Software Download                                         | 159 |
| Obtain Software Online                                    | 159 |
| Downloading Software                                      | 159 |
| Download New Version without Overwriting Existing Version | 160 |

# Before you Install the P330-ML

# Safety Information



**Caution:** Avaya P330 switches and modules contain components sensitive to electrostatic discharge. Do not touch the circuit boards unless instructed to do so.



**Caution:** Do not leave any slots open. Cover empty slots using the blanking plates supplied.



**Warning:** The fans are on whenever the power is on in the chassis.

## **FCC** Notice

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Changes or modifications to this equipment not expressly approved by Avaya Inc. could void the user's authority to operate the equipment.

## Conventions Used in the Documentation

Documentation for this product uses the following conventions to convey instructions and information:

#### **CLI Conventions**

• Mandatory keywords are in the computer bold font.

- Information displayed on screen is displayed in computer font.
- Variables that you supply are in pointed brackets <>.
- Optional keywords are in square brackets [].
- Alternative but mandatory keywords are grouped in braces {} and separated by a vertical bar |.
- Lists of parameters from which you should choose are enclosed in square brackets [] and separated by a vertical bar |.
- If you enter an alphanumeric string of two words or more, enclose the string in inverted "commas".

#### Notes, Cautions, and Warnings

Notes contain helpful information or hints or reference to material in other documentation.



**Caution:** You should take care. You could do something that may damage equipment or result in loss of data.



**Warning:** This means danger. Failure to follow the instructions or warnings may result in bodily injury. You should ensure that you are qualified for this task and have read and understood *all* the instructions

# Warranty


Avaya Inc. provides a limited warranty on this product. Refer to your sales agreement or other applicable documentation to establish the terms of the limited warranty. In addition, Avaya's standard warranty language as well as information regarding support for this product, while under warranty, is available through the following website: <a href="http://www.avaya.com/support">http://www.avaya.com/support</a>.

# **Notice**

Every effort was made to ensure that the information in this document was complete and accurate at the time of printing. However, information is subject to change.

# Avaya Support

Avaya provides a telephone number for you to use to report problems or to ask questions about your contact center. The support telephone number is 1-800-242-2121 in the United States. For additional support telephone numbers, see the Avaya Web site: <a href="http://www.avaya.com">http://www.avaya.com</a>



# Avaya P334T-ML Overview

### Introduction

The P334T-ML is a powerful Multilayer Policy 10/100 BASE-T and Gigabit Ethernet stackable switch. It enhances the P330 line to support high density multilayer 10/100 BASE-T and Gigabit Ethernet solutions.

The Avaya P330 family of stackable Ethernet workgroup switches includes a range of modules with 10/100/1000 Mbps ports, a Layer 3 capability, and ATM and WAN expansion modules.

An Avaya P330 stack can contain up to 10 switches and backup power supply units. The stacked switches are connected using stacking Modules which plug into a slot in the back of the Avaya P330. They are connected using the X330SC or X330LC cable (if the stack is split between two racks). The Avaya X330RC cable connects the top and bottom switches in the stack; this connection provides redundancy and hot-swappability. A P330 stack is managed as a single IP entity.

### About the P334T-ML

Basic information about the P334T-ML follows:

- The Avaya P334T-ML has forty-eight 10/100BASE-T and two GBIC (SFP) ports, and provides Layer 2 and optional Layer 3 Ethernet switching. Like other members of the Avaya P330 family, the P334T-ML is available in AC and DC versions.
- Multilayer switching with QoS, Policy Management, and multiple levels of security and redundancy make the Avaya P334T-ML an ideal part of a converged network. The P334T-ML is ready for voice and data applications, and supports IEEE standards for VLAN Tagging, Gigabit Ethernet, Spanning Tree, and Flow Control.

The Avaya P334T-ML can be deployed with other products in the P330-ML family in stacks of up to ten switches. This makes increasing port density or adding new technologies as simple as "plug and play."

# Avaya P334T-ML Features

- Up to 480 10/100Base-T ports in a stack.
- Octaplane<sup>TM</sup> 8 Gbps stacking fabric
- Stack, Port & LAG Redundancy
- Multiple VLANs per port

- RADIUS protocol for security
- Rapid spanning tree
- Port based network access control
- IP Multicast filtering
- Multi-layer Policy
- Terminal and modem interface
- AC and DC versions
- Backup Power Supply

# Layer 3 Features P330-ML

- RIP v.1, RIP v.2, OSPF. ARP, ICMP, DHCP/BOOTP relay
- VRRP and SRRP Redundancy
- Quality of Service
- · Access control

# Network Management and Monitoring

Comprehensive network management and monitoring are key components of today's networks. Therefore we have provided multiple ways of managing the P330-ML to suit your needs.

### **Device Manager (Embedded Web)**

The built-in P330 Device Manager (Embedded Web Manager) allows you to manage a P330 stack using a Web browser without purchasing additional software. This application works with the Microsoft Internet Explorer and Netscape Navigator web browsers and Sun Microsystems Java Plug-in.

#### **Command Line Interface (CLI)**

The P330CLI provides a terminal type configuration tool for configuration of P330-ML features and functions. You can access the CLI locally, through the serial interface, or remotely via Telnet.

#### **Avaya Integrated Manager**

When you need extra control and monitoring or wish to manage other Avaya equipment, then the Integrated Manager network management suite is the answer. This suite provides the ease-of-use and features necessary for optimal network utilization.

- MSNM is available for Microsoft Windows 95/NT/2000 and Solaris 2.8
- MSNM can operate in Stand-Alone mode with Windows NT/2000 and Solaris 2.8.
- MSNM operates under HP OpenView for Windows 95/NT/2000

#### **Port Mirroring**

The P330-ML provides port mirroring for additional network monitoring functionality. You can filter the traffic and mirror either incoming traffic to the source port or both incoming and outgoing traffic. This allows you to monitor the network traffic you need.

Ports which are members in a Link Aggregation Group (LAG) cannot *also* be used as Port Mirroring Destination or Source ports.

Within the P334T-ML switch, port mirroring can be configured between ports in the three following groups:

- 1-12, 25-36
- 13-24, 37-48
- 51, 52

On the stack level, port mirroring pairs can be configured between any Giga port, and between any Giga port on the P334T-ML and any 10/100Mbps port not residing on a P334T-ML.

#### SMON

The P330-ML switches support Avaya's ground-breaking SMON Switched Network Monitoring, which the IETF has now adopted as a standard (RFC2613). SMON provides unprecedented top-down monitoring of switched network traffic at the following levels:

- Enterprise Monitoring
- Device Monitoring
- VLAN Monitoring
- Port-level Monitoring

This top-down approach gives you rapid troubleshooting and performance trending to keep the network running optimally.

- ① An Avaya Integrated Manager Licence is required to run SMON monitoring.
- ① You need to purchase one SMON License per P330 Stack

## Fans, Power Supply, and BUPS-ML Monitoring

P330-ML switches have integrated sensors which provide advance warnings of fan failure, power supply failure or Backup Power Supply (BUPS-ML) failure via management.

# Standards and Compatibility

# Avaya P330 Standards Supported

The Avaya P330 complies with the following standards.

#### **IEEE**

- 802.3x Flow Control on all ports
- 802.1Q VLAN Tagging support on all ports
- 802.1p Priority Tagging compatible on all ports
- 802.1D Bridges and STA
- 802.1w Rapid Spanning Tree Protocol
- 802.1X Port Based Network Access Control
- 802.3z Gigabit Ethernet on ports 51,52
- 802.3u Ethernet/Fast Ethernet on ports 1-48

#### IETF - Layer 2

- MIB-II RFC 1213
- Structure and identification of management information for TCP/IP-based Internet - RFC 1155
- Simple Network Management Protocol version 1 (SNMPv1) RFC 1157
- Simple Network Management Protocol version 3 (SNMPv3) RFC 2571 2576
- PPP Internet Protocol Control Protocol (IPCP) RFC 1332
- PPP Authentication Protocols (PAP & CHAP) RFC 1334
- PPP RFC 1661
- ATM Management RFC 1695
- RMON RFC 1757
- SMON RFC 2613
- Bridge MIB Groups RFC 2674 dot1dbase and dot1dStp fully implemented.
   Support for relevant MIB objects: dot1q (dot1qBase, dot1qVlanCurrent)
- The Interfaces Group MIB RFC 2863
- Remote Authentication Dial In User Service (RADIUS) RFC 2865

## IETF - Layer 3

- Internet Protocol RFC 791
- Internet Control Message Protocol RFC 792
- Ethernet Address Resolution Protocol RFC 826

- Standard for the transmission of IP datagrams over Ethernet RFC 894
- Broadcasting Internet datagrams in the presence of subnets RFC 922
- Internet Standard Subnetting Procedure RFC 950
- Bootstrap Protocol RCF 951
- Using ARP to implement transparent subnet gateways RFC 1027
- Routing Information Protocol RCF 1058
- Hosts Extensions for IP Multicasting RFC 1112
- Requirements for Internet Hosts Communications Layers RFC 1122
- DHCP Options and BOOTP Vendor Extensions RFC 1533
- Interoperation between DHCP and BOOTP RFC 1534
- Dynamic Host Configuration Protocol RFC 1541
- Clarifications and Extensions for the Bootstrap Protocol Information RFC 1542
- OSPF Version 2 RFC 1583
- RIP Version 2 Carrying Additional Information RFC 1723
- RIP Version 2 MIB Extension RFC 1724
- Requirements for IP Version 4 Routers RFC 1812
- OSPF Version 2 Management Information Base RFC 1850
- IP Forwarding Table MIB RFC 2096
- Virtual Router Redundancy Protocol RFC 2338

#### **IETF** - Network Monitoring

- RMON (RFC 1757) support for groups 1,2,3, and 9
  - Statistics
  - History
  - Alarms
  - Events
- SMON (RFC 2613) support for groups
  - Data Source Capabilities
  - Port Copy
  - VLAN and Priority Statistics
- Bridge MIB Groups RFC 2674
  - dot1dbase and dot1dStp fully implemented.
  - Support for relevant MIB objects: dot1q (dot1qBase, dot1qVlanCurrent)

# Specifications

# P334T-ML Switch

## **Physical**

Height 2U (88 mm, 3.5")

Width 482.6 mm (19")

Depth 450 mm (17.7")

Weight 15.6 lb.

## **Power Requirements**

AC DC

Input voltage 90 to 265 VAC, 50/60 -36 to -72 VDC

Hz

Power dissipation 100 W max 100 W (max.)

Input current 1.5 A@100 VAC 4 A (max.)

0.75 A@200VAC

Inrush current 15 A@100 VAC (max.) 40 A (max.)

30 A@200VAC (max.)

#### **Environmental**

Operating Temp. -5 to 50°C (23-122°F)

Rel. Humidity 5% to 95% non-condensing

#### Safety

- UL for US approved according to UL195O Std.
- C-UL(UL for Canada) approved according to C22.2 No.950 Std.
- CE for Europe approved according to EN 60950 Std.
- Laser components are Laser Class I approved:
  - EN-60825/IEC-825 for Europe
  - FDA CFR 1040 for USA

#### Safety - AC Version

 Overcurrent Protection: A readily accessible Listed safety-approved protective device with a 16A rating must be incorporated in series with building installation AC power wiring for the equipment under protection.

#### Safety - DC Version

- Restricted Access Area: This unit must be installed in Restricted Access Areas only.
- Installation Codes: This unit must be installed in accordance with the US National Electrical Code, Article 110, and the Canadian Electrical Code, Section 12.
- Conductor Ampacity: Per UL 1950, Annex NAE (NEC Article 645-5(a)), the branch-circuit conductors supply shall have the ampacity of not less than 125 percent of the total connected load. For input leads use at least 18 AWG copper conductors.
- Overcurrent Protection: Per UL 1950, Annex NAE (NEC Article 240-3), a readily accessible listed branch-circuit overcurrent protective device rated maximum 10A must be incorporated into the building wiring.

#### **EMC Emissions**

#### **Emissions**

Approved according to:

- US FCC Part 15 sub part B, class A
- Europe EN55022 class A and EN61000-3-2
- Japan VCCI-A

### Immunity

Approved according to:

• EN 55024 and EN61000-3-3

#### Interfaces

- P334T-ML:  $48 \times 10/100$  Base-T RJ-45 port connectors +  $2 \times$  SFP pluggable gigabit ethernet fiber optic connectors.
- RS-232 for terminal setup via RJ-45 connector on front panel.

#### **Basic MTBF**

- P334T-ML: 118,723 hrs minimum.
- P334T-ML and X330STK-ML: 113,549 hrs minimum.

# Stacking Sub-module

| Name       | Number of<br>Ports |  |
|------------|--------------------|--|
| X330STK-ML | 2                  |  |

#### **Basic MTBF**

• 2,605,528 hrs minimum

# Approved SFF/SFP GBIC Transceivers

The SFF/SFP GBIC (Gigabit Interface Converter) have been tested for use with the Avaya P334T-ML Gigabit Ethernet ports. For a list of approved SFF/SFP GBIC transceivers, see: www.avayanetwork.com/

① SFF/SFP GBIC transceivers are hot-swappable.

#### **Safety Information**

The SFF/SFP GBIC transceivers are Class 1 Laser products. They comply with EN 60825-1 and Food and Drug Administration (FDA) 21 CFR 1040.10 and 1040.11.

The SFF/SFP GBIC transceivers must be operated under recommended operating conditions.

Laser Classification







① Class 1 lasers are inherently safe under reasonably foreseeable conditions of operation.



**Caution:** The use of optical instruments with this product will increase eye hazard.

Usage Restriction

When a SFF/SFP GBIC transceiver is inserted in the module but is not in use, the Tx and Rx ports should be protected with an optical connector or a dust plug.



**Caution:** Use only approved SFF/SFP GBIC transceivers. All approved SFF/SFP GBIC transceivers:

- 1) Are 3.3V. Do not insert a 5V SFF/SFP GBIC.
- 2) Use Serial Identification. Do not use a GBIC that utilizes Parallel Identification.

#### Installation

Installing and Removing a SFF/SFP GBIC Transceiver



**Caution:** Use only 3.3V Avaya-authorized SFF/SFP GBIC transceivers. Use only SFF/SFP GBIC transceivers that use Serial Identification.

The SFF/SFP GBIC transceiver is fastened using a snap-in clip.

#### To Install the SFF/SFP GBIC transceiver:

• Insert the transceiver (take care to insert it the right way up) until it clicks in place.

#### To Remove the SFF/SFP GBIC transceiver:

- 1 Press the clip on the bottom side of the transceiver.
- 2 Pull the transceiver out.

#### **Specifications**

#### LX Transceiver

A 9  $\mu m$  or 10  $\mu m$  single-mode fiber (SMF) cable may be connected to a 1000Base-LX SFF/SFP GBIC port. The maximum length is 10 km (32,808 ft).

A 50  $\mu$ m or 62.5  $\mu$ m multimode (MMF) fiber cable may be connected to a 1000Base-LX SFF/SFP GBIC port. The maximum length is 550 m (1,804 ft.) for 50  $\mu$ m and 62.5  $\mu$ m cable.

The LX transceiver has a Wavelength of 1300 nm, Transmission Rate of 1.25 Gbps, Input Voltage of 3.3V, and Maximum Output Wattage of -3 dBm.

#### SX Transceiver

A 50  $\mu$ m or 62.5  $\mu$ m multimode (MMF) fiber cable may be connected to a 1000Base-SX SFF/SFP GBIC port. The maximum length is 500 m (1,640 ft.) for 50  $\mu$ m and 220 m (722 ft.) for 62.5  $\mu$ m cable.

The SX transceiver has a Wavelength of 850 nm, Transmission Rate of 1.25 Gbps, Input Voltage of 3.3V, and Maximum Output Wattage of -4 dBm.

### **Agency Approval**

The transceivers comply with:

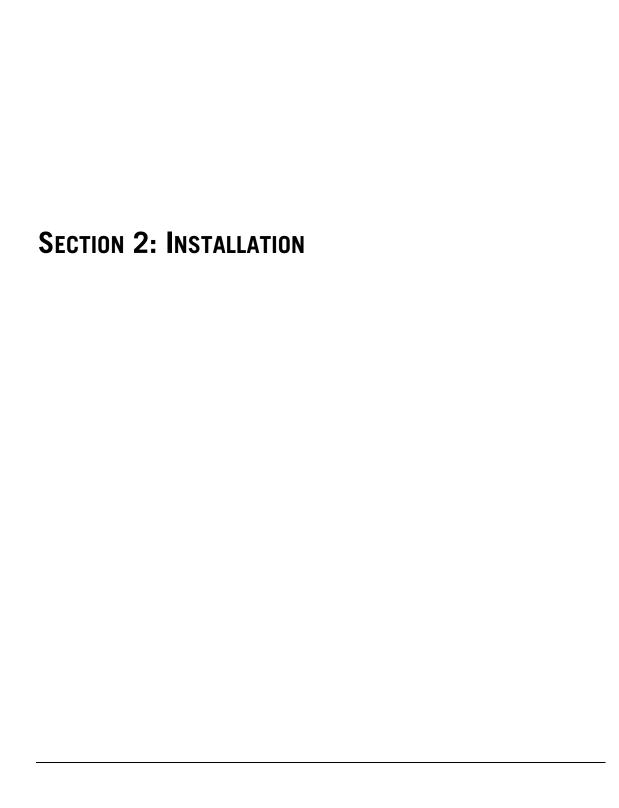
EMC Emission: US – FCC Part 15, Subpart B, Class A;
 Europe – EN55022 class A

• Immunity: EN50082-1

Safety: UL for US UL 1950 Std., C-UL (UL for Canada) C22.2 No.950 Std., Food and Drug Administration (FDA) 21 CFR 1040.10 and 1040.11, and CE for Europe EN60950 Std. Complies with EN 60825-1.

# Gigabit Fiber Optic Cabling

| Gigabit<br>Interface | Fiber<br>Type | Diameter<br>(μm) | Modal<br>Bandwidth<br>(MhzKm) | Maximum<br>Distance<br>(m) | Minimum<br>Distance<br>(m) | Wavelength (nm) |
|----------------------|---------------|------------------|-------------------------------|----------------------------|----------------------------|-----------------|
| 1000BASE-SX          | MM            | 62.5             | 160                           | 220                        | 2                          | 850             |
| 1000BASE-SX          | MM            | 62.5             | 200                           | 275                        | 2                          | 850             |
| 1000BASE-SX          | MM            | 50               | 400                           | 500                        | 2                          | 850             |
| 1000BASE-SX          | MM            | 50               | 500                           | 550                        | 2                          | 850             |
| 1000BASE-LX          | MM            | 62.5             | 500                           | 550                        | 2                          | 1310            |
| 1000BASE-LX          | MM            | 50               | 400                           | 550                        | 2                          | 1310            |
| 1000BASE-LX          | SM            | 9                | NA                            | 10,000                     | 2                          | 1310            |
| 1000BASE-<br>ELX     | SM            | 9                | NA                            | 70,000                     | 2                          | 1550            |


# Console Pin Assignments

For direct Console communications, connect the Avaya P330 to the Console Terminal using the supplied RJ-45 crossed cable and RJ-45 to DB-9 adapter.

| Avaya P330 RJ-45 Pin | Name<br>(DCE View)   | Terminal<br>DB-9 Pins | Modem<br>DB-25 Pins |
|----------------------|----------------------|-----------------------|---------------------|
| 1                    | For future use       | NC                    | See note            |
| 2                    | TXD<br>(P330 input)  | 3                     | 3                   |
| 3                    | RXD<br>(P330 output) | 2                     | 2                   |
| 4                    | CD                   | 4                     | 8                   |
| 5                    | GND                  | 5                     | 7                   |
| 6                    | DTR                  | 1                     | 20                  |
| 7                    | RTS                  | 8                     | 4                   |
| 8                    | CTS                  | 7                     | 5                   |

① Pin 1 of the Modem DB-25 connector is internally connected to Pin 7 GND.

14



# Installation

The P334T-ML is ready to work after you complete the installation instructions below.

# Required Tools

Make sure you have the following tool at hand before undertaking the Installation procedures:

• Phillips (cross-blade) screwdriver

# Site Preparation

You can mount Avaya P330 switches alone or in a stack in a standard 19-inch equipment rack in a wiring closet or equipment room. Up to 10 units can be stacked in this way. When deciding where to position the unit, ensure that:

- It is accessible and cables can be connected easily and according to the configuration rule.
- Cabling is away from sources of electrical noise such as radio transmitters, broadcast amplifiers, power lines, and fluorescent lighting fixtures.
- Water or moisture cannot enter the case of the unit.
- There is a free flow of air around the unit and that the vents in the sides of the case are not blocked.
- ① Use Octaplane cables to interconnect with other switches.
- The environmental conditions match the requirements listed below:

### Table 4.1 Environmental Prerequisites

Operating Temp. -5 to 50°C (23 to 122°F)

Relative Humidity 5% to 95% non-condensing

• The power source matches the specifications listed below:

*Table 4.2 Power Requirements — AC* 

Input voltage 90 to 265 VAC, 50/60 Hz

Power dissipation 100 W max

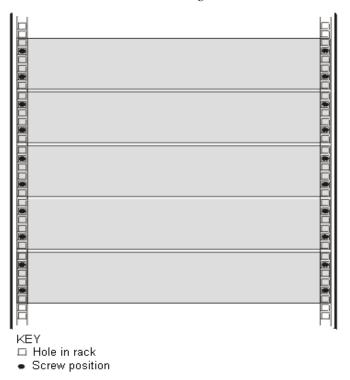
Input current 1.5 A

*Table 4.3 Power Requirements — DC* 

Input voltage -36 to -72 VDC

Power dissipation 100 W max

Input current 4 A max


# Rack Mounting (Optional)

The P334T-ML case fits in most standard 19-inch racks. P334T-ML is 2U (88 mm, 3.5") high.

Place the P334T-ML in the rack as follows:

- 1 Snap open the ends of the front panel to reveal the fixing holes.
- 2 Insert the unit into the rack. Ensure that the four P334T-ML screw holes are aligned with the rack hole positions as shown in Figure 4.1.

Figure 4.1 P334T-ML Rack Mounting



- 3 Secure the unit in the rack using the screws. Use two screws on each side. Do not overtighten the screws.
- 4 Snap close the hinged ends of the front panel.
- 5 Ensure that ventilation holes are not obstructed.

# Installing the X330STK-ML Stacking Sub-Module (Optional)



**Caution:** The stacking sub-modules contain components sensitive to electrostatic discharge. Do not touch the circuit board unless instructed to do so.

To install the stacking sub-module in the P334T-ML:

- 1 Remove the blanking plate from the back of the P334T-ML switch.
- Insert the stacking sub-module gently into the slot, ensuring that the metal base plate is aligned with the guide rails. The metal plate of the X330STK-ML (and *not* the PCB) fits onto the guide rails.
- 3 Press the sub-module in firmly until it is completely inserted into the P334T-ML.
- 4 Gently turn the two screws on the side panel of the stacking sub-module until they are secure.
- ① The P334T-ML must not be operated with the back-slot open. The stacking submodule should be covered with the supplied blanking plate if necessary.
- ① Only use the X330STK-ML stacking module with the P334T-ML.

# Connecting Stacked Switches

① The two ends of the Octaplane cable terminate with different connectors. Each connector can only be connected to its matching port.

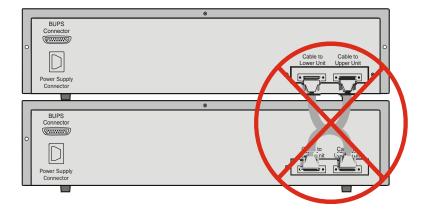
You can use the following cables to connect stacked switches:

- Short Octaplane cable (X330SC) ivory-colored, used to connect adjacent switches (Catalog No. CB0223) or switches separated by a BUPS unit.
- Long/Extra Long Octaplane cable (X330LC/X330L-LC) ivory-colored, used to connect switches from two different physical stacks, or switches separated by a BUPS unit (Catalog No. CB0225/CB0270).
- Redundant/Long Redundant Octaplane cable (X330RC/X330L-RC) black, used to connect the top and bottom switches of a stack (Catalog No. CB0222/ CB0269).

These are the same cables that are used with all the P330 switches.

#### To connect stacked switches:

- ① When adding a module to an existing stack, first connect the stacking cables and then power up the module.
- Plug the light grey connector of the Short Octaplane cable into the port marked "to upper unit" of the bottom P330 switch.
- 2 Plug dark grey connector of same Short Octaplane cable to the port marked "to lower unit" in the unit above. The connections are illustrated in Figure 4.3.
- 3 Repeat Steps 1 and 2 until you reach the top switch in the stack.


- 4 If you wish to implement stack redundancy, use the Redundant Cable to connect the port marked "to lower unit" on the bottom switch to the port marked "to upper unit" on top switch of the stack.
- 5 Power up the added modules.



**Caution:** Do not cross connect two P330 switches with two Octaplane (light-colored) cables. If you wish to cross-connect for redundancy, use one light-colored Octaplane cable and one black redundancy cable. Figure 4.2 shows an incorrect connection.

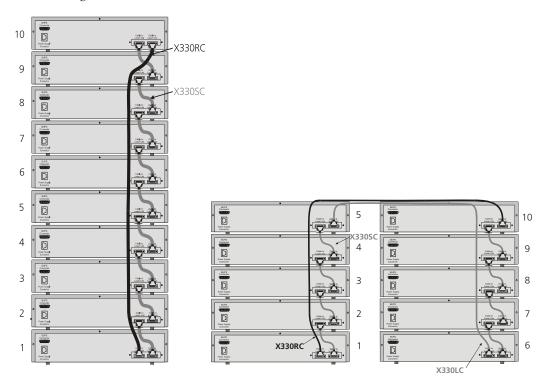

① You can build a stack of up to 10 P330 switches (any mixture of P330 and P330-ML modules within a stack is possible). If you do not wish to stack all the switches in a single rack, use long Octaplane cables to connect two physical stacks as shown in Figure 4.3.

Figure 4.2 Incorrect Stack Connection



① Figures 4.2 and 4.3 show the back panel of a P330 switch AC version. These drawings also apply to the P330-ML products.

Figure 4.3 P330 Stack Connections



# Making Connections to Network Equipment

This section describes the physical connections that you can make between the Avaya P330 switch and other network equipment.

## **Prerequisites**

Make sure you have the following before attempting to connect network equipment to the P330 switch:

- A list of network equipment to be connected to the P330 switch, detailing the connector types on the various units
- All required cables (see below). Appropriate cables are available from your local supplier.

## **Connecting Cables to Network Equipment**

P334T-ML switches include the following types of ports (according to the speed and standard they support): 10/100BASE-T and SFP GBIC

To connect the cables:

- Insert an SFP GBIC (Small Form Factor Plugable Gigabit Interface Converter) transceiver (not supplied) to port housings numbered 51 and 52.
- ① GBICs are 3.3V.
- 2 Connect an Ethernet fiberoptic cable (not supplied) to the GBIC transceiver. You can use LC or MT-RJ fiberoptic cables, depending on the GBIC type you are using. For a list of approved SFP GBIC transceivers, see www.avayanetwork.com. For fiberoptic cable properties, see Table 4.4.
- 3 For all other ports, connect an Ethernet copper cable (not supplied) directly to the ports. The copper ports can operate with 2 pair (4 wire) or 4 pair (8 wire) Ethernet cables (crossed or straight). The maximum cable length is 100 m (328 ft.).
- 4 Connect the other end of the cable to the Ethernet port of the PC, server, router, workstation, switch, or hub.
- 5 Check that the appropriate link (LNK) LED lights up.

Table 4.4 displays the different types of SFP GBIC interfaces, their fiber type, diameter, modal bandwidth, wavelengths, minimum and maximum distance.

Table 4.4 Gigabit Ethernet Cabling

| Gigabit<br>Interface | Fiber<br>Type | Diameter<br>(μm) | Modal<br>Bandwidth<br>(MhzKm) | Maximum<br>Distance<br>(m) | Minimum<br>Distance<br>(m) | Wavelength (nm) |
|----------------------|---------------|------------------|-------------------------------|----------------------------|----------------------------|-----------------|
| 1000BASE-SX          | MM            | 62.5             | 160                           | 220                        | 2                          | 850             |
| 1000BASE-SX          | MM            | 62.5             | 200                           | 275                        | 2                          | 850             |
| 1000BASE-SX          | MM            | 50               | 400                           | 500                        | 2                          | 850             |
| 1000BASE-SX          | MM            | 50               | 500                           | 550                        | 2                          | 850             |
| 1000BASE-LX          | MM            | 62.5             | 500                           | 550                        | 2                          | 1310            |
| 1000BASE-LX          | MM            | 50               | 400                           | 550                        | 2                          | 1310            |
| 1000BASE-LX          | SM            | 9                | NA                            | 10,000                     | 2                          | 1310            |
| 1000BASE-ELX         | SM            | 9                | NA                            | 70,000                     | 2                          | 1550            |

# Powering Up the Avaya P330

This section describes the procedures for powering up the Avaya P330 unit.

# Powering On – Avaya P330 Module AC

For the AC input version of the Avaya P330, insert the AC power cord into the power inlet in the back of the unit. The unit powers up.

If you are using a BUPS, insert a power cord from the BUPS into the BUPS-ML connector in the back of the unit. The unit powers up even if no direct AC power is applied to the unit.

After power up or reset, the Avaya P330 performs a self test procedure.



**Caution:** Ensure that you connect your P330-ML units to the BUPS-ML only. The P330 BUPS is not compatible with P330-ML units.

# Powering On – Avaya P330 Switch DC

For the DC input version of the Avaya P330, connect the power cable to the switch at the input terminal block.

- 1 The terminals are marked "+", "-", and with the IEC 5019a Ground symbol.
- 2 The size of the three screws in the terminal block is M3.5.
- 3 The pitch between each screw is 9.5mm.

Connect the power cable to the DC power supply. After power up or reset, the Avaya P330 performs a self test procedure.



**Warning:** Before performing any of the following procedures, ensure that DC power is OFF.



**Caution:** This product is intended for installation in restricted access areas and is approved for use with 18 AWG copper conductors only. The installation must comply with all applicable codes.



**Warning:** The proper wiring sequence is ground to ground, positive to positive and negative to negative. Always connect the ground wire first and disconnect it last.

## Post-Installation

The following indicate that you have performed the installation procedure correctly:

 Table 5.1
 Post-Installation Indications

| Procedure         | Indication                                                                                          | Troubleshooting Information |
|-------------------|-----------------------------------------------------------------------------------------------------|-----------------------------|
| Powering the P330 | All front panel LEDs illuminate briefly.                                                            | Page 155                    |
| Creating Stacks   | The LED next to the appropriate connection ("Cable to upper unit" or "Cable to lower unit") is lit. | Page 155                    |

If you do not receive the appropriate indication, please refer to "Troubleshooting the Installation".

# Avaya P334T-ML Front and Rear Panels

# Avaya P334T-ML Front Panel

The P334T-ML front panel contains LEDs, controls, and connectors. The status LEDs and control buttons provide at-a-glance information.

The front panel LEDs consist of Port LEDs and Function LEDs. The Port LEDs display information for each port according to the illuminated function LED. The function is selected by pressing the left or right button until the desired parameter LED is illuminated. Each Function is displayed first for ports 1-24. Pressing the same button a second time displays the function for ports 25-48 (see Figure 6.3). Pressing the same button a third time will move to the next function. When the 25-48 LED is OFF, ports 1-24 are displayed, and when the 25-48 LED is ON, ports 25-48 are displayed. The information for the SFP ports (51, 52) is displayed regardless of the status of the 25-48 LED.

For example, if the COL LED is illuminated, and the 25-48 LED is off, then all Port LEDs show the collision status of ports 1-24. If you wish to select the LAG function for the same ports, then press the right button until the LAG Function LED is lit and the 25-48 LED is OFF. If you then wish to select Rx for ports 25-48, press the left button several times until both the Rx function LED and the 25-48 LED light.

The P334T-ML front panel shown below includes LEDs, buttons, SFP GBIC transceiver housings 10/100BASE-T ports and the RJ-45 console connector. The LEDs are described in Table 6.1.

① The 10/100BASE-T ports of the P334T-ML are numbered from 1-48. The two SFP Gigabit Ethernet ports are numbered 51,52. Port LED numbers 49-50 are reserved.

Figure 6.1 P334T-ML Front Panel



Figure 6.2 P334T-ML LEDs

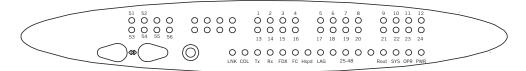



Figure 6.3 Order of Function Parameters Selected with the Left/Right Front Panel Buttons

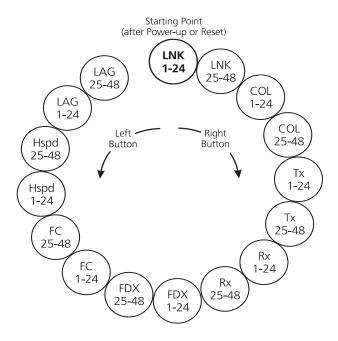



Table 6.1 Avaya P334T-ML LED Descriptions

| LED Name | Description   | LED Status                       |
|----------|---------------|----------------------------------|
|          |               | OFF – Power is off               |
| PWR      | Power Status  | ON – Power is on                 |
|          |               | Blink – Using BUPS-ML power only |
| OPR      | CPU Operation | OFF – Module is booting          |
| Of K     |               | ON – Normal operation            |

Table 6.1 Avaya P334T-ML LED Descriptions (Continued)

| LED Name            | Description           | LED Status                                                                                                                                                       |
|---------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                       | OFF – Module is a slave in a stack                                                                                                                               |
| SYS                 | System Status         | ON – Module is the master of the stack and the Octaplane and Redundant (optional) cable(s) are connected correctly. This LED will also light in Standalone mode. |
|                     |                       | Blink – Box is the master of the stack and the Octaplane is in redundant mode.                                                                                   |
| ROUT                | Pouting Mode          | OFF – Layer 2 mode                                                                                                                                               |
| KOU1                | Routing Mode          | ON – Router mode                                                                                                                                                 |
| The following       | Function LEDs apply t | to all ports                                                                                                                                                     |
| LNK                 | Port Status           | ON – Link is OK<br>OFF – Port is disabled<br>Blink – Port is enabled, but Link is down                                                                           |
| COL                 | Collision             | OFF – No collision or full-duplex port for ports 1 -48; always OFF for ports 51-52. ON – Collision occurred on line.                                             |
|                     |                       | OFF – No transmit activity                                                                                                                                       |
| Tx Transmit to line |                       | ON – Data transmitted on line from the module                                                                                                                    |
|                     |                       | OFF – No receive activity                                                                                                                                        |
| Rx                  | Receive from line     | ON – Data received from the line into the module                                                                                                                 |
| FDX                 | Full Duplex mode      | ON – Full duplex mode (ports 1-48)<br>OFF – Half duplex mode (ports 1-48)<br>Always ON for ports 51,52 (full-duplex mode<br>only)                                |

Table 6.1 Avaya P334T-ML LED Descriptions (Continued)

| LED Name | Description      | LED Status                                                                                                                     |
|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------|
|          |                  | OFF – No flow control.                                                                                                         |
| FC       | Flow Control     | ON – One of the three possible flow control modes is <i>enabled</i> .                                                          |
|          |                  | Note: FC LED for Gigabit Ethernet ports reflect the last negotiated mode when autonegotiation is enabled and the link is down. |
| LAG      | Link Aggregation | OFF – No LAG defined for this port                                                                                             |
|          | Group (Trunking) | ON – Port belongs to a LAG                                                                                                     |

① All LEDs are lit during reset.

# Avaya P334T-ML Back Panel

| Table 6.2 | Avaya P334T-ML <> Select buttons |
|-----------|----------------------------------|
|           |                                  |

| Description  | Function                                                                                                                        |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|
| Left/Right   | Individual – select LED function (see table above)                                                                              |
| Reset module | Press both right and left buttons together for approximately 2 seconds. All LEDs on module light up until buttons are released. |
| Reset stack  | Press both Right and Left buttons together for 4 seconds. All LEDs on stack light up until buttons are released.                |

The P334T-ML back panel contains a Stacking Sub-module slot, power supply and BUPS-ML connector. Figure 6.4 shows the back panel of the AC version switch and Figure 6.5 shows the back panel of the DC version switch with a stacking sub-module installed.

Figure 6.4 P334T-ML AC version Back Panel (with Stacking Sub-module, BUPS-ML connector cover plate removed)



Figure 6.5 P334T-ML DC Back Panel (without Stacking Sub-module installed, BUPS-ML connector cover plate shown)



## **BUPS-ML Input Connector**

The BUPS-ML input connector is a 3.3 VDC and 5 VDC connector for use with the P330 BUPS-ML unit only. A BUPS Input sticker appears directly above the BUPS-ML input connector, which is covered with a metal plate.

Figure 6.6 BUPS-ML Input Connector Sticker



# **Establishing Switch Access**

This chapter describes various methods for accessing the Avaya P330 CLI and logging in with the appropriate security level.

Methods for accessing the Avaya P330 CLI include using:

- a terminal to the serial port on the switch
- P330 Sessions
- a workstation running a Telnet or SSH session connected via the network
- a remote terminal/workstation attached via a modem (PPP connection)

# Establishing a Serial Connection

This section describes the procedure for establishing switch access between a terminal and the Avaya P330 switch over the serial port provided on the front panel of the P330 (RJ-45 connector labeled "Console"). For information on the console port pin assignments, refer to "Console Pin Assignments" on page 13.

## **Configuring the Terminal Serial Port Parameters**

The serial port settings for using a terminal or terminal emulator are as follows:

- Baud Rate 9600 bps
- Data Bits 8 bits
- Parity None
- Stop Bit 1
- Flow Control None
- Terminal Emulation VT-100

## Connecting a Terminal to the Avaya P330 Serial port

Perform the following steps to connect a terminal to the Avaya P330 Switch Console port for accessing the text-based CLI:

- 1 The P330 device is supplied with a console cable and a RJ-45-to-DB-9 adaptor. Use these items to connect the serial (COM) port on your PC/terminal to the Avaya P330 console port.
- 2 Ensure that the serial port settings on the terminal are 9600 baud, 8 bits, 1 stop bit and no parity.
- When you are prompted for a Login Name, enter the default login. The default login is **root**.
- 4 When you are promoted for a password, enter the user level password **root**.

## P330 Sessions

You can use sessions to switch between the CLI of P330 modules, other stack entities (for example, an X330 ATM or WAN entity plugged into a specific P330 switch or with the G700 Media Gateway Processor), or to switch between Layer 2 and Layer 3 commands in the router module.

To switch between P330 modules use the command:

session [<mod num>] <mode>.

The <mod\_num> is the number of the module in the stack, counting from the bottom up.

The <mode> can be either switch, router, wan, atm, mgp.

Use **switch** mode to configure layer 2 commands.

Use **router** mode to configure routing commands.

**Examples:** 

To configure router parameters in the module that you are currently logged into, type the following command:

#### session router.

To configure the switch parameters, on module 6, type the command: session 6 switch.

① When you use the session command the security level stays the same.

# Assigning P330's IP Stack Address

① All P330 switches are shipped with the same default IP address. You must change the IP address of the master P330 switch in a stack in order to guarantee that the stack has its own unique IP address in the network.

The network management station or a workstation running Telnet session can establish communications with the stack once this address had been assigned and the stack has been inserted into the network. Use the CLI to assign the P330 stack an IP address and net mask.

To assign a P330 IP stack address:

- 1 Establish a serial connection by connecting a terminal to the Master P330 switch of the stack.
- 2 When prompted for a Login Name, enter the default name root
- 3 When you are prompted for a password, enter the password **root**. You are now in Supervisor Level.
- 4 At the prompt, type:

set interface inband <vlan> <ip\_address> <netmask>
Replace <vlan>, <ip\_address> and <netmask> with the VLAN,
IP address, and net mask of the stack.

5 Press Enter to save the IP address and net mask.

- At the prompt, type **reset** and press Enter to reset the stack. After the Reset, log in again as described above.
- At the prompt, type **set ip route** <dest> <gateway> and replace <dest> and <gateway> with the destination and gateway IP addresses.

# Establishing a Telnet Connection

Perform the following steps to establish a Telnet connection to the Avaya P330 for configuration of Stack or Router parameters. You can Telnet the Stack Master IP address:

- 1 Connect your station to the network.
- Verify that you can communicate with the Avaya P330 using Ping to the IP of the Avaya P330. If there is no response using Ping, check the IP address and default gateway of both the Avaya P330 and the station.
- ① The Avaya P330 default IP address is 149.49.32.134 and the default subnet mask is 255.255.255.0.
- 3 From the Microsoft Windows taskbar of your PC click **Start** and then **Run** (or from the DOS prompt of your PC), then start the Telnet session by typing: telnet <*P330\_IP\_address>*If the IP Address in the Telnet command is the IP address of the stack, then connection is established with the Switch CLI entity of the Master module. When you see the "Welcome to P330" menu and are prompted for a Login Name, enter the default name root
- When you are prompted for a password, enter the User Level password **root** in lower case letters (do NOT use uppercase letters). The User level prompt will appear when you have established communications with the Avaya P330.
- 5 Press Enter to save the destination and gateway IP addresses.

# Establishing an SSH Connection

Perform the following steps to establish an SSH connection to the Avaya P330 for configuration of Stack or Router parameters. You can open an SSH session to the Stack Master IP address:

- 1 Connect your station to the network.
- 2 Verify that you can communicate with the Avaya P330 using Ping to the IP of the Avaya P330. If there is no response using Ping, check the IP address and default gateway of both the Avaya P330 and the station.
- ① The Avaya P330 default IP address is 149.49.32.134 and the default subnet mask is 255.255.255.0.
- 3 Using the show ip ssh command, ensure that an SSH key has been generated on the switch using the crypto key generate dsa command and that SSH is enabled on the switch using the ip ssh enable command.
- 4 Using your SSH client software, open a session to the Stack Master IP address.

When you are prompted for a password, enter the User Level password **root** in lower case letters (do NOT use uppercase letters). The User level prompt will appear when you have established communications with the Avaya P330.

# Establishing a Modem (PPP) Connection with the P330

#### **Overview**

Point-to-Point Protocol (PPP) provides a Layer 2 method for transporting multi-protocol datagrams over modem links.

#### **Connecting a Modem to the Console Port**

A PPP connection with a modem can be established only after the Avaya P330 is configured with an IP address and net-mask, and the PPP parameters used in the Avaya P330 are compatible with the modem's PPP parameters.

- 1 Connect a terminal to the console port of the Avaya P330 switch as described in Connecting a Terminal to the Avaya P330 Serial port.
- When you are prompted for a Login Name, enter the default name root.
- When you are prompted for a password, enter the password **root**. You are now in Supervisor Level.
- 4 At the prompt, type:
  - set interface ppp <ip\_addr> <net-mask>
    with an IP address and netmask to be used by the Avaya P330 to connect via its
    PPP interface.
- ① The PPP interface configured with the set interface ppp command must be on a different subnet from the stack inband interface.
- 5 Set the baud rate, ppp authentication, and ppp time out required to match your modem. These commands are described in the *Avaya P330: Reference Guide*.
- 6 At the prompt, type:

## set interface ppp enable

The CLI responds with the following:

Entering the Modem mode within 60 seconds...

Please check that the proprietary modem cable is plugged into the console port

- 7 Use the DB-25 to RJ-45 connector to plug the console cable to the modem's DB-25 connector. Plug the other end of the cable RJ-45 connector to the Avaya P330 console's RJ-45 port.
- 8 The Avaya P330 enters modem mode.
- 9 You can now dial into the switch from a remote station, and open a Telnet session to the PPP interface IP address.

## Security Levels

There are four security access levels – User, Privileged, Configure, and Supervisor.

- The User level ('read-only') is a general access level used to show system parameter values.
- The Privileged level ('read-write') is used by site personnel to access stack configuration options.
- The Configure level is used by site personnel for Layer 3 configuration.
- The Supervisor level ('administrator') is used to define user names, passwords, and access levels of up to 10 local CLI users, configure SNMPv3, configure RADIUS authentication, and control access protocols to the device.
- ① If you wish to define more than ten users per switch, or accounts for a user on multiple switches, use RADIUS (Remote Authentication Dial-In User Service).

A login name and password are always required to access the CLI and the commands. The login name, password, and access-type (i.e., security level) for a user account are established using the username command.

Switching between the entities, does not effect the security level since security levels are established specifically for each user. For example, if the operator with a privileged security level in the Switch entity switches to the Router entity the privileged security level is retained.

① If you wish to increase security, you can change the default user accounts.

## **Entering the Supervisor Level**

The Supervisor level is the level in which you first enter P330 CLI and establish user names for up to 10 local users. When you enter the Supervisor level, you are asked for a Login name. Type root as the Login name and the default password root (in lowercase letters):

```
Welcome to P330
Login: root
Password:***
Password accepted.
Cajun P330-N(super)#
```

Defining new local users

Define new users and access levels using the following command in Supervisor Level:

| In order to                                                                     | Use the following command |
|---------------------------------------------------------------------------------|---------------------------|
| Add a local user account and configure a user (name, password and access level) | username                  |
| To remove a local user account                                                  | no username               |
| Display the username, password and access type for all users on the switch      | show username             |

Exiting the Supervisor Level

To exit the Supervisor level, type the command exit.

## **Entering the CLI**

To enter the CLI, enter your username and password. Your access level is indicated in the prompt as follows:

The User level prompt is shown below:

Cajun\_P330-N>

The Privileged level prompt is shown below:

Cajun P330-N#

The Configure level prompt for Layer 3 configuration is shown below:

P330-N(configure)#

The Supervisor level prompt is shown below:

Cajun P330-N(super)#

## User Authentication

## Introduction

A secure system provides safeguards to insure that only authorized personnel can perform configuration procedures. In Avaya P330, these safeguards form part of the CLI architecture and control remote access via SNMP, Telnet, and SSH. In addition, you can block any of the IP protocols supported by the P330.

## **SNMP Support**

#### Introduction to SNMP

#### **SNMP Versions**

There are currently three versions of (Simple Network Management Protocol) SNMP:

- SNMPv1
- SNMPv2c
- SNMPv3

The P330 supports device access using all three versions of SNMP.

## Managers and Agents

SNMP uses software entities called managers and agents to manage network devices. The manager monitors and controls all other SNMP-managed devices or network nodes on the network. There must be at least one SNMP Manager in a managed network. The manager is installed on a workstation located on the network.

An agent resides in a managed device or network node. The agent receives instructions from the SNMP Manager, generates reports in response to requests from the SNMP Manager, and also sends management information back to the SNMP Manager as events occur. Every P330 module has an agent. However, on each P330 stack, one module is selected to be the master module. The stack is managed via the master module's agent.

There are many SNMP management applications, but all these applications perform the same basic task. They allow SNMP managers to communicate with agents to configure, get statistics and information, and receive alerts from network devices. You can use any SNMP-compatible network management system to monitor and

control the P330.

#### Manager/Agent Communication

There are several ways that the SNMP manager and the agent communicate.

The manager can:

- Retrieve a value a *get* action
   The SNMP manager requests information from the agent, such as the link status of an Ethernet port or the number of good packets received on the switch. The agent gets the value of the requested MIB variable and sends the value back to
- Retrieve the value immediately after the variable you name a *get-next* action.
   The SNMP manager retrieves values from the MIB tree. Using the get-next function, you do not need to know the exact variable name you are looking for.

The SNMP manager takes the variable you name and then uses a sequential

- Retrieve a number of values a *get-bulk* action
   The get-bulk operation retrieves the specified number of instances of the requested MIB variable. This minimizes the number of protocol exchanges required to retrieve a large amount of data.
- ① Get-bulk is not supported in SNMPv1.

search to find the desired variable.

- Change a setting on the agent a set action
   The SNMP manager requests the agent to change the value of the MIB variable.
   For example, you can enable or disable a port.
- An agent can send an unsolicited message to the manager at any time if a significant, predetermined event takes place on the agent. This message is called a *trap*.
  - When a trap condition occurs, the SNMP agent sends an SNMP trap message to the specified trap receiver or trap host. The SNMP Administrator configures the trap host, usually the SNMP management station, to perform the action needed when a trap is detected.

#### SNMPv1

SNMPv1 uses community strings to limit access rights. Each SNMP device is assigned to a read community and a write community. To communicate with a switch, you must send an SNMP packet with the relevant community name.

By default, if you communicate with a switch using only the read community, you are assigned the security name 'ReadCommN'. This security name is mapped to the 'ReadCommG' group by default. This allows you to view the agent's MIB tree, but cannot change any of the values in the MIB tree.

If you communicate with a switch using the write community, you are assigned the security name 'WriteCommN'. This security name is mapped to the

'WriteCommG' group by default. This allows you to view the agent's MIB tree and change any of the values in the MIB tree.

① If you delete the ReadCommN or WriteCommN users, the ReadCommG or WriteCommG groups, or the SNMPv1View you may not be able to access the switch using SNMPv1 or SNMPv2c.

In addition, traps are sent to designated trap receivers. Packets with trap information also contains a trap community string.

#### SNMPv2c

SNMPv2c is very similar to SNMPv1. However, SNMPv2c adds support for the *get-bulk* action and supports a different trap format.

#### SNMPv3

SNMPv3 enables the following features over SNMPv1 or v2c:

- User authentication with a username and password.
- Communication encryption between the Network Management Station (NMS) and the SNMP agent at the application level
- Access control definition for specific MIB items available on the SNMP agent
- Notification of specified network events directed toward specified users
- Definition of roles using access control, each with unique access permissions and authentication/encryption requirements

The basic components in SNMPv3 access control are users, groups, and views.

In addition. SNMPv3 uses an SNMP engine ID to identify SNMP identity. An SNMP engine ID is assigned to each IP address of each device in the network. Each SNMP engine ID should be unique in the network.

#### Users

SNMPv3 uses the User-based Security Model (USM) for security, and the View-based Access Control Model (VACM) for access control. USM uses the HMAC-MD5-96 and HMAC-SHA-96 protocols for user authentication, and the CBC-DES56 protocol for encryption or privacy.

A maximum of 21 users, including local users and remote users getting notifications can be defined on a stack. If the SNMP engine ID changes, all users other than the default user for the stack are invalid and must be redefined. The SNMP engine ID can be changed via the CLI. In addition, a change in the IP address of the stack automatically changes the SNMP engine ID.

SNMPv3 supports three security levels:

• **NoAuthNoPriv** – This is the lowest level of SNMPv3 security. No (Message Authentication Code) MAC is provided with the message, and no encryption is performed. This method is maintains the same security level as SNMPv1, but provides a method for limiting the access rights of a user.

- AuthNoPriv User authentication is performed based on MD5 or SHA
  algorithms. The message is sent with an HMAC that is calculated with the user
  key. The data part is sent unencrypted.
- AuthPriv User authentication is performed based on MD5 or SHA algorithms. The message is sent in encrypted MAC that is calculated with the user key, and the data part is sent with DES56 encryption using the user key.

To create an SNMPv3 user account, the following information must be provided:

- **UserName** string representing the name of the user. Maximum length: 32 characters.
- **Authentication Protocol** The authentication protocol to use. Possible values are: No auth, HMAC MD5, or HMAC SHA-1.
- Authentication Password The authentication password is transformed using the authentication protocol and the SNMP engine ID to create an authentication key.
- Privacy Protocol The privacy protocol to use. Possible values are: No privacy, DES privacy.
- Privacy Password The privacy password is transformed using the privacy protocol and the SNMP engine ID to create a privacy key.
- **GroupName** 32 character string representing the name of the group.
- **SecurityModel** The security model to use. Possible values are: 1 (SNMPv1), 2 (SNMPv2c), 3 (USM).

## Groups

In SNMPv3, each user is mapped to a group. The group maps its users to defined views. These views define sets of access rights, including read, write, and trap or inform notifications the users can receive.

The group maps its users to views based on the security mode and level with which the user is communicating with the switch. Within a group, the following combinations of security mode and level can be mapped to views:

- **SNMPv1** Anyone with a valid SNMPv1 community name.
- **SNMPv2c** Anyone with a valid SNMPv2c community name.
- **NoAuthNoPriv** An SNMPv3 user using the NoAuthNoPriv security level.
- AuthNoPriv An SNMPv3 user using the AuthNoPriv security level.
- **AuthPriv** An SNMPv3 user using the AuthPriv security level.

If views are not defined for all security modes and levels, a user can access the highest level view below his security level. For example, if the SNMPv1 and SNMPv2c views are undefined for a group, anyone logging in using SNMPv1 and SNMPv2c cannot access the device. If the NoAuthNoPriv view is not defined for a group, SNMPv3 users with a NoAuthNoPriv security level can access the SNMPv2c view.

To create an SNMPv3 group, the following information must be provided:

• **GroupName** – 32 character string representing the name of the group.

- **SNMPv1** The name of the view for anyone communicating with the device via SNMPv1.
- SNMPv2c The name of the view for anyone communicating with the device via SNMPv2c.
- NoAuthNoPriv The name of the view for SNMPv3 NoAuthNoPriv users.
- AuthNoPriv The name of the view for SNMPv3 AuthNoPriv users.
- **AuthPriv** The name of the view for SNMPv3 AuthPriv users.

#### Views

There are three types of views:

- Read Views Allow read-only access to a specified list of Object IDs (OIDs) in the MIB tree.
- Write Views Allow read-write access to a specified list of OIDs in the MIB tree.
- Notify Views Allow SNMP notifications from a specified list of OIDs to be sent.

Each view consists of a list of OIDs in the MIB tree. This list can be created using multiple "snmp-server view" commands to either add OIDs to the list or exclude OIDs from a list of all of the OIDs in the switch's MIB tree.

You can use wildcards to include or exclude an entire branch of OIDs in the MIB tree, using an asterisk instead of the specific node.

To create an SNMPv3 view, the following information must be provided:

- ViewName 32 character string representing the name of the view.
- ViewType Indicates whether the specified OID is included or excluded from the view.
- OIDs A list of the OIDs accessible using the view.

#### **SNMP Commands**

The following SNMP commands are available.

| In order to                                                                     | Use the following command |
|---------------------------------------------------------------------------------|---------------------------|
| Enable SNMP access to the device                                                | snmp-server enable        |
| Disable SNMP access to the device                                               | no snmp-server            |
| Enable SNMPv1 access to the device                                              | snmp-server community     |
| Disable SNMPv1 access to the device                                             | no snmp-server community  |
| Configure the SNMPv3 engine ID                                                  | snmp-server engineID      |
| Return the SNMPv3 engine ID to its default                                      | no snmp-server engineID   |
| Create an SNMPv3 user                                                           | snmp-server user          |
| Remove an SNMPv3 user                                                           | no snmp-server user       |
| Create an SNMPv3 group                                                          | snmp-server group         |
| Remove an SNMPv3 group                                                          | no snmp-server group      |
| Create a view or add or exclude OIDs from a view                                | snmp-server view          |
| Delete an SNMPv3 view                                                           | no snmp-server view       |
| Set a read/write/trap SNMPv1 community name                                     | set snmp community        |
| Display a list of SNMPv3 views                                                  | show snmp view            |
| Display a table of SNMPv3 users and the groups with which they are mapped       | show snmp userToGroup     |
| Display the SNMPv3 engine ID                                                    | show snmp engineID        |
| Display a list of SNMPv3 groups                                                 | show snmp group           |
| Display a list of SNMPv3 users                                                  | show snmp user            |
| Display a list of SNMPv3<br>notification receivers and SNMPv1<br>trap receivers | show snmp                 |

| In order to                                                                   | Use the following command         |
|-------------------------------------------------------------------------------|-----------------------------------|
| Enable or disable link up/link down notifications and traps                   | set port trap                     |
| Define SNMPv1 trap receivers or configure the SNMPv1 traps sent by the device | set snmp trap                     |
| Removes SNMPv1 trap receivers                                                 | clear snmp trap                   |
| Enable or disable SNMPv1 traps for authentication failures                    | set snmp trap enable/disable auth |
| Enable SNMP notifications (traps and inform)                                  | snmp-server enable notifications  |
| Disable SNMP notifications (traps and inform)                                 | no snmp-server notifications      |
| Create an SNMPv3 remote user for SNMP notifications                           | snmp-server remote-user           |
| Remove an SNMPv3 remote user for SNMP notifications                           | no snmp-server remote-user        |
| Configure the SNMPv3 timeout and retries for notifications                    | snmp-server informs               |
| Define an SNMPv3 notification host                                            | snmp-server host                  |
| Remove an SNMPv3 notification host                                            | no snmp-server host               |

# SSH Protocol Support

#### Introduction to SSH

SSH (Secure Shell) protocol is a security protocol that enables establishing a remote session over a secured tunnel, also called a remote shell. SSH accomplishes this by creating a transparent encrypted channel between the local and remote devices. In addition to remote shell, SSH also provides secure file transfer between the local and remote devices.

## SSH uses password authentication.

A maximum of two SSH sessions can be active per router module in the stack, with

two additional active SSH sessions per stack. For example, if a stack contains three router modules, a maximum of eight SSH sessions can be active on the stack.

The P330 agent reports SSH sessions opened to it. In addition, each router module reports the SSH sessions opened to its router interface. The user can disconnect selected SSH sessions.

The SSH session-establishment process is divided into the following stages, as shown in Figure 8.1:

#### SSH client connection:

- The P330 generates a key of variable length (512-2048 bits) using the DSA encryption method. This is the private key.
- The P330 calculates an MD5 Hash of the public key, called a fingerprint. The fingerprint is always 16 bytes long. This fingerprint is displayed.
- The P330 sends the public key (i.e., the fingerprint,) to the client computer.
   This public key is used by the client to encrypt the data it sends to the P330.
   The P330 decrypts the data using the private key.
- Both sides negotiate and must agree on the same chipper type. The P330 only supports 3DES-CBC encryption. The user on the client side accepts the fingerprint. The client keeps an IP vs. fingerprint public key cache and notifies the user if the cache changes.
- The client chooses a random number that is used to encrypt and decrypt the information sent.
- This random number is sent to the P330, after encryption based on the P330's public key.
- When the P330 receives the encrypted random number, it decrypts it using the private key. This random number is now used with the 3DES-CBC encryption method for all encryption and decryption of data. The public and private keys are no longer used.

#### User Authentication:

 Before any data is transferred, the P330 requires the client to supply a user name and password. This authenticates the user on the client side to the P330.

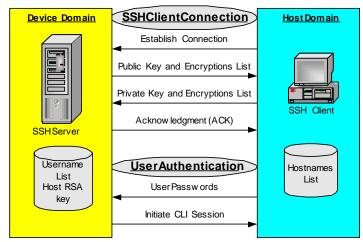



Figure 8.1 SSH Session Establishment Process

#### **SSH Commands**

The following SSH commands are accessible from Supervisor level.

| In order to                                                                                                                                   | Use the following command |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Enable SSH and configure SSH parameters                                                                                                       | ip ssh enable             |
| Disable the SSH server                                                                                                                        | no ip ssh                 |
| Display active SSH sessions on the device. This command is only available from the master module switch context and from all router contexts. | show ip ssh               |
| Disconnect an existing SSH session. If an SSH session was entered from the router, it can only be disconnected from router mode.              | disconnect ssh            |
| Generate an SSH host key pair                                                                                                                 | crypto key generate dsa   |

# **SCP Protocol Support**

In addition to data transfer via an SSH session, the SSH protocol is also used to support SCP for secure file transfer. When using SCP, the P330 is the client, and an

SCP server must be installed on the management station. After defining users on the SCP server, the device acts as an SCP client.

The procedure described in the "Introduction to SSH" on page 45 is used with the roles of the P330 and the client computer reversed.

To accomplish secured transfers, a P330 launches a local SSH client via the CLI in order to establish a secured channel to the secured file server. The P330 authenticates itself to the server by providing a user name and password. With a Windows-based SSH server (WinSSHD), the user name provided must be a defined user on the Windows machine with read/write privileges. The files transferred via SCP are saved in the "C:\Documents and Settings\username" directory.

The network element performs file transfer in unattended mode.

The P330 doesn't block SCP traffic from users not on the allowed managers list, because it is the SSH client. In addition, the P330 doesn't prompt the user to accept the Server's fingerprint nor warns the user if the fingerprint from an IP address has changed.

For information on SCP file transfer commands, refer to "Uploading and Downloading Device Configurations and Images" on page 63.

## **RADIUS**

#### Introduction to RADIUS

User accounts are typically maintained locally on the switch. Therefore, if a site contains multiple Avaya Switches, it is necessary to configure each switch with its own user accounts. Additionally, if for example a 'read-write' user has to be changed into a 'read-only' user, you must change all the 'read-write' passwords configured locally in every switch, in order to prevent him from accessing this level. This is obviously not effective management. A better solution is to have all of the user login information kept in a central location where all the switches can access it. P330 features such a solution: the Remote Authentication Dial-In User Service (RADIUS).

A RADIUS authentication server is installed on a central computer at the customer's site. On this server user authentication (account) information is configured that provides various degrees of access to the switch. The P330 will run as a RADIUS client. When a user attempts to log into the switch, if there is no local user account for the entered user name and password, then the switch will send an Authentication Request to the RADIUS server in an attempt to authenticate the user remotely. If the user name and password are authenticated, then the RADIUS server responds to the switch with an Authentication Acknowledgement that includes information on the user's privileges ('administrator', 'read-write', or 'read-only'), and the user is allowed to gain access to the switch. If the user is not authenticated, then an Authentication Reject is sent to the switch and the user is not allowed access

to the switch's embedded management.

The Remote Authentication Dial-In User Service (RADIUS) is an IETF standard (RFC 2138) client/server security protocol. Security and login information is stored in a central location known as the RADIUS server. RADIUS clients, such as the P330, communicate with the RADIUS server to authenticate users.

All transactions between the RADIUS client and server are authenticated through the use of a "shared secret" which is not sent over the network. The shared secret is an authentication password configured on both the RADIUS client and its RADIUS servers. The shared secret is stored as clear text in the client's file on the RADIUS server, and in the non-volatile memory of the P330. In addition, user passwords are sent between the client and server are encrypted for increased security.

Figure 8.2 illustrates the RADIUS authentication procedure:

User attempts login

Local User
account
authenticated in
switch?

No

Authentication
request sent to
RADIUS Server

User name and
password
authenticated?

No

Perform log-in according

to user's priviliege level

to switch

Figure 8.2 RADIUS Authentication Procedure

Authentication Reject

sent to switch

User cannot access switch

embedded managegment

#### **Radius Commands**

The following RADIUS commands are accessible from Supervisor level.

| In order to                                                                                                 | Use the following command              |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Enable or disable authentication for<br>the P330 switch. RADIUS<br>authentication is disabled by<br>default | set radius authentication              |
| Set a primary or secondary<br>RADIUS server IP address                                                      | set radius authentication server       |
| Configure a character string to be used as a "shared secret" between the switch and the RADIUS server       | set radius authentication secret       |
| Set the RFC 2138 approved UDP port number.                                                                  | set radius authentication udp-port     |
| Set the number of times an access request is sent when there is no response                                 | set radius authentication retry-number |
| Set the time to wait before re-sending an access request                                                    | set radius authentication retry-time   |
| Remove a primary or secondary RADIUS authentication server                                                  | clear radius authentication server     |
| Display all RADIUS authentication configurations. Shared secrets are not displayed.                         | show radius authentication             |

For a complete description of the RADIUS CLI commands, including syntax and output examples, refer to *Avaya P330*: *Reference Guide*.

## Telnet Client Support

#### **Introduction to Telnet**

The P330ML supports invocation of a Telnet client from the CLI. The Telnet client implementation enables you to control the destination port for connecting daemons that listen on a non-default port.

Authentication when connecting to the switch via Telnet is identical to standard console connection authentication (local or RADIUS).

① Enabling and disabling the Telnet-client service can only be done using a direct console connection via the Console port.

By default the Telnet-client service is disabled.

#### **Telnet Commands**

The following Telnet commands are available.

| In order to                              | Use the following command |  |
|------------------------------------------|---------------------------|--|
| Open a Telnet session to another device. | telnet                    |  |
| Enable Telnet access from the switch     | ip telnet-client enable   |  |
| Disable Telnet access from the switch    | no ip telnet-client       |  |

For a complete description of the Telnet CLI commands, including syntax and output examples, refer to *Avaya P330: Reference Guide*.

# Recovery Password

#### Introduction

The P330 provides a recovery password in the event that you have forgotten the login password for the switch. The recovery password feature enables you to login to the device in a super user mode and change the regular login password.

The recovery password feature can be disabled preventing unauthorized user to login to the device using the recovery password. However, if the recovery password feature is disables and you forget the login password, it will not be possible to log in to the switch. By default the recovery password feature is enabled.

To use the recovery password feature, you must connect to the switch's console port. Log in using the user name "root" and password "ggdaseuaimhrke". Use the set username command to change the password for the user "root".

① Enabling and disabling the Recovery Password protocol can only be done using a direct console connection via the Console port.

## **Recovery Password Commands**

The following recovery password commands are available.

| In order to                                         | Use the following command         |  |
|-----------------------------------------------------|-----------------------------------|--|
| Enable the recovery password feature on the switch  | terminal recovery password enable |  |
| Disable the recovery password feature on the switch | no terminal recovery password     |  |

For a complete description of the recovery password commands, including syntax, refer to *Avaya P330: Reference Guide*.

# **Allowed Managers**

#### **Allowed Managers Introduction**

With the Allowed Managers feature, the network manager can determine who may or may not gain management access to the switch. The feature can be enabled or disabled (default is disabled). When enabled, only those users that are configured in the Allowed Managers table are able to gain Telnet, HTTP, and SNMP management access to the switch.

You can configure up to 20 Allowed Managers by adding or removing their IP address from the Allowed Managers List.

The identification of an "Allowed Manager" is done by checking the Source IP address of the packets. Thus, if the Source IP address is modified on the way (NAT, Proxy, etc.), even an "Allowed Manager" will not be able to access the P330.

## **Allowed Managers CLI Commands**

The following Allowed Managers commands are available.

| In order to                                                                                                          | Use the following command |
|----------------------------------------------------------------------------------------------------------------------|---------------------------|
| When set to enabled - only managers with IP address specified in the allowed table will be able to access the device | set allowed managers      |
| Add/delete IP address of manager to/from the allowed table                                                           | set allowed managers ip   |

| In order to                                                                 | Use the following command    |  |  |
|-----------------------------------------------------------------------------|------------------------------|--|--|
| Show the IP addresses of the managers that are allowed to access the device | show allowed managers table  |  |  |
| Show whether the status of allowed managers is enabled or disabled          | show allowed managers status |  |  |
| Show the IP addresses of the managers that are currently connected          | show secure current          |  |  |

## **Allowed Protocols**

#### **Allowed Protocols Introduction**

With the Allowed Protocols feature, the network manager can determine the IP protocols enabled on the switch. This feature can be used to block access to the switch using specific IP protocols. Each protocol can be independently enabled or disabled on the switch.

① Enabling and disabling the Recovery Password protocol can only be done using a direct console connection via the Console port.

#### **Allowed Protocols CLI Commands**

The following Allowed Protocols commands are available.

| In order to                                                        | Use the following command |  |
|--------------------------------------------------------------------|---------------------------|--|
| Enable Telnet on the switch                                        | ip telnet enable          |  |
| Disable Telnet on the switch                                       | no ip telnet              |  |
| Enable HTTP on the switch                                          | ip http enable            |  |
| Disable HTTP on the switch                                         | no ip http                |  |
| Enable the switch agent to accept ICMP redirect packets sent to it | ip icmp redirect          |  |
| Enable the switch agent to ignore ICMP redirect packets sent to it | no icmp redirect          |  |
| Enable SNMP on the switch                                          | snmp-server               |  |

| In order to                             | Use the following command         |  |  |
|-----------------------------------------|-----------------------------------|--|--|
| Disable SNMP on the switch              | no snmp-server                    |  |  |
| Enable SNMPv1 switch access             | snmp-server community             |  |  |
| Disable SNMPv1 switch access            | no snmp-server community          |  |  |
| Enable SSH on the switch                | ip ssh enable                     |  |  |
| Disable SSH on the switch               | no ip ssh                         |  |  |
| Enable Recovery Password on the switch  | terminal recovery password enable |  |  |
| Disable Recovery Password on the switch | no terminal recovery password     |  |  |
| Enable Telnet access from the switch    | ip telnet-client enable           |  |  |
| Disable Telnet access from the switch   | no ip telnet-client               |  |  |

# **SECTION 3: CONFIGURATION**

# P330 Default Settings

This section describes the procedures for the first-time configuration of the Avaya P334T. The factory defaults are set out in detail in the tables included in this chapter.

# Configuring the Switch

The Avaya P330 may be configured using the text-based Command Line Interface (CLI), the built-in Avaya P330 Device Manager (Embedded Web) or Avaya MultiService Network Manager.

For instructions on the text-based CLI, see the *Avaya P330 Reference Guide*.

For instructions on installation of the graphical user interfaces, see Embedded Web Manager. For instructions on the use of the graphical user interfaces, refer to the Device Manager User Guide on the Documentation and Utilities CD.

#### **Avaya P330 Default Settings**

The default settings for the Avaya P330 switch and its ports are determined by the Avaya P330 software. These default settings are subject to change in newer versions of the Avaya P330 software. See the Release Notes for the most up-to-date settings.

| Function                          | Default Setting      |
|-----------------------------------|----------------------|
| IP address                        | 149.49.32.134        |
| Subnet Mask                       | 255.255.255.0        |
| Default gateway                   | 0.0.0.0              |
| Management VLAN ID                | 1                    |
| Spanning tree                     | Enabled              |
| Bridge priority for Spanning Tree | 32768                |
| Spanning tree version             | Common spanning tree |
| MAC aging                         | Enabled              |
| MAC aging time                    | 5 minutes            |

| Function                                                                                     | Default Setting                                                   |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Keep alive frame transmission                                                                | Enabled                                                           |
| Network time acquisition                                                                     | Enabled, Time protocol                                            |
| IP multicast filtering                                                                       | Disabled                                                          |
| 802.1x system-auth-control                                                                   | Disabled                                                          |
| 802.1x port-control                                                                          | Auto                                                              |
| RADIUS server                                                                                | Disabled                                                          |
| Time server IP address                                                                       | 0.0.0.0                                                           |
| Timezone offset                                                                              | 0 hours                                                           |
| SNMPv1 communities:<br>Read-only<br>Read-write<br>Trap SNMP                                  | Public<br>Public<br>Public                                        |
| SNMPv3 user name password:                                                                   | initial No authentication or privacy password                     |
| SNMP authentication trap                                                                     | Disabled                                                          |
| CLI timeout                                                                                  | 15 Minutes                                                        |
| System logging                                                                               | Disabled                                                          |
| Allowed protocols: SNMP Telnet HTTP Telnet ICMP redirect SSH Telnet client Recovery password | Enabled Enabled Enabled Enabled Enabled Disabled Disabled Enabled |
| User Name/Password                                                                           | root/root                                                         |

① Functions operate in their default settings unless configured otherwise.

| Function                                   | Default Setting                                             |                     |
|--------------------------------------------|-------------------------------------------------------------|---------------------|
|                                            | Ports 1-48                                                  | Ports 51, 52        |
| Duplex mode                                | Half/Full duplex<br>depends on auto-<br>negotiation results | Full duplex only    |
| Port speed                                 | 10/100 Mbps<br>Depends on auto-<br>negotiation results      | 1000 Mbps           |
| Auto-negotiation <sup>1</sup>              | Enable                                                      | Enable              |
| Flow control                               | Disabled (no pause)                                         | Disabled (no pause) |
| Flow control autonegotiation advertisement | Not applicable                                              | Disabled (no pause) |
| Administrative state                       | Enable                                                      | Enable              |
| Port VLAN ID                               | 1                                                           | 1                   |
| Tagging mode                               | Clear                                                       | Clear               |
| Port priority                              | 0                                                           | 0                   |
| Spanning Tree cost                         | 19                                                          | 4                   |
| Spanning Tree port priority                | 128                                                         | 128                 |

<sup>1</sup> Ensure that the other side is also set to Autonegotiation Enabled.

# Switch Configuration

## Introduction

This chapter describes the parameters you can define for the chassis, such as its name and location, time parameters, and so on. In addition, this chapter describes methods for saving and deploying device configurations and monitoring CPU utilization.

#### **Basic Switch Configuration**

Use the CLI commands briefly described below for configuring the display on your terminal or workstation. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                                                                                                   | Use the following command |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Open a CLI session to a P330<br>module in the stack, ATM or WAN<br>expansion modules, and Media<br>Gateway Processor of G700. | session                   |
| Display or set the terminal width (in characters)                                                                             | terminal width            |
| Display or set the terminal length (in lines)                                                                                 | terminal length           |
| Display or set the prompt                                                                                                     | hostname                  |
| Return the prompt to its default value                                                                                        | no hostname               |
| Clear the current terminal display                                                                                            | clear screen              |
| Set the number of minutes before<br>an inactive CLI session<br>automatically logs out                                         | set logout                |
| Display the number of minutes before an inactive CLI session automatically times out                                          | show logout               |

| In order to                                                                                                  | Use the following command |
|--------------------------------------------------------------------------------------------------------------|---------------------------|
| Access Layer 3 configuration if not logged in as supervisor (see "Entering the Supervisor Level" on page 37) | configure                 |

### **System Parameter Configuration**

#### Identifying the system

In order to make a P330 switch easier to identify, you can define a name for the switch, contact information for the switch technician, and the location of the switch in the organization. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                         | Use the following command |
|-------------------------------------|---------------------------|
| Configure the system name.          | set system name           |
| Configure the system contact person | set system contact        |
| Configure the system location       | set system location       |

## Operating parameters

You can use the following commands to configure and display the mode of operation for the switch and display key parameters. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                                                   | Use the following command |
|-------------------------------------------------------------------------------|---------------------------|
| Configure the basic mode of operation of a module to either Layer 2 or Router | set device-mode           |
| Display the mode of operation                                                 | show device-mode          |
| Display system parameters                                                     | show system               |
| Display module information for all modules within the stack                   | show module               |

#### **Network Time Acquiring Protocols Parameter Configuration**

The P330 can acquire the time from a Network Time Server. P330 supports the SNTP Protocol (RFC 958) over UDP port 123 or TIME protocol over UDP port 37. Use the CLI commands briefly described below for configuring and display time information and acquiring parameters. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                       | Use the following command |
|---------------------------------------------------|---------------------------|
| Restore the time zone to its default, UTC.        | clear timezone            |
| Configure the time zone for the system            | set timezone              |
| Configure the time protocol for use in the system | set time protocol         |
| Enable or disable the time client                 | set time client           |
| Configure the network time server IP address      | set time server           |
| Display the current time                          | show time                 |
| Display the time status and parameters            | show time parameters      |
| Display the current time zone offset              | show timezone             |
| Get the time from the time server                 | get time                  |

# Uploading and Downloading Device Configurations and Images

Avaya P330 allows you to backup and restore device configurations and configure multiple devices using Simple Network Management Protocol (SNMP) and Trivial File Transfer Protocol (TFTP) or Secure Copy Protocol (SCP) to exchange information with the devices. For more information on SNMP, refer to "SNMP Support" on page 39. For more information on SCP, refer to "SCP Protocol Support" on page 47.

When you make changes to a device's configuration, you may find that the overall effect of the configuration change may have a negative effect on the performance of the device in your network. By uploading a device's configuration file before any configuration changes, you can easily restore the device to a previous configuration. In addition, you can download the same configuration file to multiple devices in the network, resulting in a consistent configuration.

You can also download image files to the switch. The image files provide the switch's embedded software, embedded Web software, and Power over Ethernet (PoE) software.

① Only parameters that differ from the factory default settings for the switch are included in the configuration file. Therefore, it is important to reinitialize the NVRAM to the factory default settings before downloading configuration files to the switch.

The P330 commands for uploading and downloading device configuration files differ for the Layer 2 and Layer 3 configuration files.

① To upload or download files, you must log in to the device as a user with Supervisor level privileges.

#### **Layer 2 Configuration File**

The Layer 2 configuration file contains the full Layer 2 configuration of the switch in the format of the CLI commands necessary to configure the device to its current configuration. The user can edit the file in a text editor, however, it is recommended that configuration changes are performed using the MSNM P330 Device Manager and/or the CLI. To upload or download Layer 2 configuration files, you must be in a switch mode.

Use the CLI commands briefly described below for uploading and downloading Layer 2 configuration files. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                                                                                     | Use the following command                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Download a startup configuration file to the device using SCP (only applicable when the device mode is Layer 2) | copy scp startup-config  Note: To use the startup  configuration file, run the copy running-config starting-config command after the configuration file is downloaded to the device. |
| Download a module configuration file to the device using SCP                                                    | copy scp module-config                                                                                                                                                               |
| Download a stack configuration file to the device using SCP                                                     | copy scp stack-config                                                                                                                                                                |

| In order to                                                                                                               | Use the following command                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Download a startup configuration<br>file to the device using TFTP (only<br>applicable when the device mode is<br>Layer 2) | copy tftp startup-config  Note:To use the startup configuration file, run the copy running-config starting-config command after the configuration file is downloaded to the device. |
| Download a module configuration file to the device using TFTP                                                             | copy tftp module-config                                                                                                                                                             |
| Download a stack configuration file to the device using TFTP                                                              | copy tftp stack-config                                                                                                                                                              |
| Download embedded software using TFTP                                                                                     | copy tftp sw_image                                                                                                                                                                  |
| Download embedded Web software using TFTP                                                                                 | copy tftp ew_archive                                                                                                                                                                |
| Download PoE software using TFTP                                                                                          | copy tftp sw_powerinline_image                                                                                                                                                      |
| Upload the startup configuration file from the device using SCP (only applicable when the device mode is Layer 2)         | copy startup-config scp                                                                                                                                                             |
| Upload a module configuration file from the device using SCP                                                              | copy module-config scp                                                                                                                                                              |
| Upload a stack configuration file from the device using SCP                                                               | copy stack-config scp                                                                                                                                                               |
| Upload the running configuration file from the device using SCP (only applicable when the device mode is Layer 2)         | copy running-config scp                                                                                                                                                             |
| Upload the startup configuration file from the device using TFTP (only applicable when the device mode is Layer 2)        | copy startup-config tftp                                                                                                                                                            |

| In order to                                                                                                        | Use the following command |
|--------------------------------------------------------------------------------------------------------------------|---------------------------|
| Upload a module configuration file from the device using TFTP                                                      | copy module-config tftp   |
| Upload a stack configuration file from the device using TFTP                                                       | copy stack-config tftp    |
| Upload the running configuration file from the device using TFTP (only applicable when the device mode is Layer 2) | copy running-config tftp  |
| Display the status of file uploads                                                                                 | show upload status        |
| Display the status of file downloads                                                                               | show download status      |

#### **Layer 3 Configuration File**

The Configuration File feature allows the user to read the routing configuration parameters and save them to a file on the station. The routing configuration commands in the file are in CLI format. The user can edit the file (if required) and re-configure the router module by uploading the configuration file.

Although the file can be edited, it is recommended to keep changes to the file to a minimum. The recommended configuration method is using MSNM P330 Device Manager and/or the CLI. Changes to the configuration file should be limited to those required to customize a configuration file from one router to suit another.

To upload or download Layer 3 configuration files, you must be in a router mode. Use the CLI commands briefly described below for uploading and downloading Layer 3 configuration files. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                                   | Use the following command                                                                                                                                                          |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Download a startup configuration file to the device using SCP | copy scp startup-config  Note:To use the startup configuration file, run the copy running-config starting-config command after the configuration file is downloaded to the device. |

| In order to                                                      | Use the following command                                                                                                                                                           |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Download a startup configuration file to the device using TFTP   | copy tftp startup-config  Note:To use the startup configuration file, run the copy running-config starting-config command after the configuration file is downloaded to the device. |
| Upload a startup configuration file from the device using SCP    | copy startup-config scp                                                                                                                                                             |
| Upload the running configuration file from the device using SCP  | copy running-config scp                                                                                                                                                             |
| Upload a startup configuration file from the device using TFTP   | copy startup-config tftp                                                                                                                                                            |
| Upload the running configuration file from the device using TFTP | copy running-config tftp                                                                                                                                                            |

# System Logging

#### **System Logging Introduction**

The Avaya P330 System Logging feature is capable of storing system messages on a device, outputting messages to the CLI console, Telnet session, or SSH session, and reporting remotely to a Syslog server. System Logging is an important tool used for routine maintenance, auditing, and monitoring access to the device.

The components of System Logging include:

- Logging Messages
- Sinks
- Message filters based on application, severity, or access level

#### System Logging Messages

System logging messages provide the following information:

- Module ID The number of the module from which the message originated.
- Event Time The time the event occurred. The Event Time is included only if a time server is configured for the device.
- Application The software sub-system from which the message originated.
- Severity Level The severity level of the message. Severity levels from the highest severity to the lowest include: Emergency, Alert, Critical, Error, Warning, Notification, Informational, Debug
- Message Content A description of the event.

In order to reduce the number of collected and transmitted messages, filtering options should be used. The filtering options are based on message classification by application and severity. For a specified sink, you can define the threshold severity for messages output by each application. Messages with a severity lower than the defined threshold are not sent to the specified sink.

In addition, the session sink filters the messages using the access level of the user. This filtering depends on the syslog sink type:

- Session only messages the user is permitted to access (according to the user's access level) are output to the console or Telnet/SSH session.
- Log file when displaying the contents of the log file, the user can see only
  messages appropriate to their access level.
- Syslog server the user should define the access level used when sending
  messages to the syslog server. The user cannot specify an access level for the
  syslog server higher than the level which has been assigned to the user.

You can define severity filters to overrule the default threshold. The following is a list of default severity threshold for each syslog sink:

- Syslog server Warning
- Log file Informational

- Console Informational
- Telnet/SSH session Warning

#### Sinks

System logging messages can be sent via a number of 'sinks' or methods. By default, none of the sinks is enabled. The following table provides a list of available sinks.

| Sink                                | Description                                                                                                                                               |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Session<br>(Console/<br>Telnet/SSH) | Logging messages are sent to the current console or a Telnet or SSH session in non-blocking mode.                                                         |
| Log File                            | Logging messages are saved to a log file in the NVRAM of the master module in the stack. NVRAM initialization and device reset do not erase the log file. |
| Syslog server                       | Logging messages are sent to a Syslog server as ASCII text. Up to three Syslog servers can be defined for a stack.                                        |

① The system logging configuration for the "session" sink is not saved to NVRAM. The configuration only affects the active session from which the commands are executed. Each session must be configured separately.

## **Applications**

An application is a software sub-system from which a logging message can originate. The following table provides a list of supported applications:

| Message Facility<br>Codes | Description                  |
|---------------------------|------------------------------|
| BOOT                      | Reset events                 |
| SYSTEM                    | Operating system failures    |
| ROUTER                    | Core routing system failures |
| CONFIG                    | Configuration changes        |
| FILESYS                   | File System Problem (flash)  |
| FAN                       | Cooling system messages      |
| SUPPLY                    | Power supply system messages |

| Message Facility<br>Codes | Description                       |
|---------------------------|-----------------------------------|
| SECURITY                  | Authentication Failures           |
| CASCADE                   | Stack CASCADE mechanism messages  |
| QOS                       | Quality of Service messages       |
| SWITCHFABRIC              | Switch fabric failures            |
| LAG                       | Link Aggregation package messages |
| VLAN                      | VLAN package messages             |
| SNMP                      | SNMP agent messages               |
| POLICY                    | Policy package messages           |
| CLI                       | Command Line interpreter messages |
| STP                       | Spanning tree package messages    |
| THRESHOLD                 | RMON alarms messages              |
| CONSOLE                   | Console port events               |

### Syslog Servers

Remote logging using Syslog servers provides the following advantages:

- History and archiving Storing logs remotely shifts the burden of storing log
  output to a device with an actual file system and cheap ample storage. This
  provides an option to keep large logs files and the ability to archive and store
  log files.
- **Data Manipulation** Once the log data is on a system with tools that can manipulate it, log data can be used to generate valuable reports.

To configure logging via a Syslog server:

- 1 Define a Syslog host. Up to three Syslog servers can be defined.
- 2 Define the syslog "facility" that the messages are sent to on the remote syslog server. If a syslog facility is not defined, the default facility, local7, is used.
- 3 Define the syslog access-level. The default syslog server access level is readwrite.
- 4 Enable the Syslog server. Syslog server sinks are created as "disabled".
- 5 Addition optional configuration includes setting the different logging filters.

## **Syslog Configuration CLI Commands**

Use the CLI commands briefly described below for configuring System Logging. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                                                          | Use the following command              |
|--------------------------------------------------------------------------------------|----------------------------------------|
| Enable or disable logging for the current session                                    | set logging session {enable   disable} |
| Define a filter rule for logging messages for the current session                    | set logging session condition          |
| Display the logging configuration for the current session                            | show logging session condition         |
| Define the IP addresses of the<br>Syslog servers                                     | set logging server                     |
| Delete a Syslog server from the Syslog server table                                  | clear logging server                   |
| Enable or disable logging for a<br>Syslog server                                     | set logging server {enable   disable}  |
| Define a filter rule for logging messages for a Syslog server                        | set logging server condition           |
| Update the server facility parameter of a configured Syslog server                   | set logging server facility            |
| Defines the access level associated with a Syslog server sink.                       | set logging server access-level        |
| Display the logging configuration for the specified Syslog server or for all servers | show logging server condition          |
| Enable or disable logging to a file on NVRAM                                         | set logging file {enable   disable}    |
| Define a filter rule for logging messages to a file                                  | set logging file condition             |
| Display the logging configuration for the file sink.                                 | show logging file condition            |

| In order to                                                                                                                                                  | Use the following command |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Delete the log file and open an empty log file                                                                                                               | clear logging file        |
| Outputs the messages logged in the log file to the CLI console. The output is arranged in descending order of occurrence, with the most recent events first. | show logging file content |

# Monitoring CPU Utilization

The Avaya P330 provides you with the ability to monitor CPU utilization on each module of the stack. Use the CLI commands briefly described below for enabling and disabling CPU utilization monitoring and viewing CPU utilization statistics. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                              | Use the following command |
|----------------------------------------------------------|---------------------------|
| Enable CPU utilization monitoring on a module or stack   | set utilization cpu       |
| Disable CPU utilization monitoring on a module or stack  | clear utilization cpu     |
| Display CPU utilization statistics for a module or stack | show utilization          |

# Avaya P330 Layer 2 Features

This section describes the Layer 2 features. It provides the basic procedures for configuring the Layer 2 operation.

## Overview

The P330 family supports a range of Layer 2 features. Each feature has CLI commands associated with it. These commands are used to configure, operate, or monitor switch activity for each of the Layer 2 features.

This section of the *User's Guide* explains each of the features. Specifically, the topics discussed here include:

- Ethernet
- VLAN
- Port Based Network Access Control
- Spanning Tree Protocol
- Rapid Spanning Tree Protocol
- MAC Security
- MAC Aging
- Link Aggregation Group (LAG)
- Port Redundancy
- IP Multicast Filtering
- RMON
- SMON
- Port Mirroring
- Multilayer Policy
- Weighted Queuing
- Port Classification
- Stack Redundancy
- Stack Health

## **Ethernet**

Ethernet is one of the most widely implemented LAN standards. It uses the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method to handle simultaneous demands. CSMA/CD is a multi-user network allocation procedure in which every station can receive the transmissions of every other station. Each station waits for the network to be idle before transmitting and each station can detect collisions by other stations.

The first version of Ethernet supported data transfer rates of 10 Mbps, and is therefore known as 10BASE-T.

#### **Fast Ethernet**

Fast Ethernet is a newer version of Ethernet, supporting data transfer rates of 100 Mbps. Fast Ethernet is sufficiently similar to Ethernet to support the use of most existing Ethernet applications and network management tools. Fast Ethernet is also known as 100BASE-T (over copper) or 100BASE-FX (over fiber).

Fast Ethernet is standardized as IEEE 802.3u.

#### **Gigabit Ethernet**

Gigabit Ethernet supports data rates of 1 Gbps. It is also known as 1000BASE-T (over copper) or 1000BASE-FX (over fiber).

Gigabit Ethernet is standardized as IEEE 802.3z.

## **Configuring Ethernet Parameters**

**Auto-Negotiation** 

Auto-Negotiation is a protocol that runs between two stations, two switches or a station and a switch. When enabled, Auto-Negotiation negotiates port speed and duplex mode by detecting the highest common denominator port connection for the endstations. For example, if one workstation supports both 10 Mbps and 100 Mbps speed ports, while the other workstation only supports 10 Mbps, then Auto-Negotiation sets the port speed to 10 Mbps.

For Gigabit ports, Auto-Negotiation determines the Flow Control configuration of the port.

Full-Duplex/Half-Duplex

Devices that support Full-Duplex can transmit and receive data simultaneously, as opposed to half-duplex transmission where each device can only communicate in turn.

Full-Duplex provides higher throughput than half-duplex.

#### Speed

The IEEE defines three standard speeds for Ethernet: 10, 100 and 1000 Mbps (also known as Ethernet, Fast Ethernet and Gigabit Ethernet respectively).

#### Flow Control

The process of adjusting the flow of data from one device to another to ensure that the receiving device can handle all of the incoming data. This is particularly important where the sending device is capable of sending data much faster than the receiving device can receive it.

There are many flow control mechanisms. One of the most common flow control protocols, used in Ethernet full-duplex, is called xon-xoff. In this case, the receiving device sends a an xoff message to the sending device when its buffer is full. The sending device then stops sending data. When the receiving device is ready to receive more data, it sends an *xon* signal.

#### Priority

By its nature, network traffic varies greatly over time, so short-term peak loads may exceed the switch capacity. When this occurs, the switch must buffer frames until there is enough capacity to forward them to the appropriate ports.

This, however, can interrupt time-sensitive traffic streams, such as Voice and other converged applications. These packets need to be forwarded with the minimum of delay or buffering. In other words, they need to be given high priority over other types of network traffic.

Priority determines in which order packets are sent on the network and is a key part of QoS (Quality of Service). The IEEE standard for priority on Ethernet networks is 802.1p.

The Avaya P334T-ML supports two internal priority queues – the High Priority queue and the Normal Priority queue – on its Gigabit Ethernet ports (51,52) and four internal priority queues on its 10/100Mbps ports. The classification of packets within the queues is as follows:

- Gigabit Ethernet ports:
  - packets tagged with priorities 4-7 are assigned to the High Priority queue
  - packets tagged with priorities 0-3 are assigned to the Normal Priority queue.
- 10/100Mbps ports:
  - packets tagged with priorities 0-1 are assigned to the Low Priority queue
  - packets tagged with priorities 2-3 are assigned to the Normal Priority queue;
  - packets tagged with priorities 4-5 are assigned to the High Priority queue
  - packets tagged with priorities 6-7 are assigned to the Highest Priority queue.

This classification is based either on the packet's original priority tag, or, if the packet arrives at the port untagged, based on the priority configured for the ingress port (using the set port level CLI command).

In cases where the packet was received tagged, this priority tag is retained when the packet is transmitted through a tagging port.

In cases where the priority is assigned based on the ingress priority of the port, then on an egress tagging port the packet will carry a priority tag of:

- If the ingress port was a P330 port or a Gigabit Ethernet port (51,52) on the P334T-ML, the packet will be tagged either priority 0 or priority 4, depending on the queue it was assigned to (High Priority=4, Normal Priority=0).
- If the ingress port was a 10/100 Ethernet port on the P334T-ML, the packet will be tagged according to the ingress port priority value configured by the set port level CLI command.

#### MAC Address

The MAC address is a unique 48-bit value associated with any network adapter. MAC addresses are also known as hardware addresses or physical addresses. They uniquely identify an adapter on a LAN.

MAC addresses are 12-digit hexadecimal numbers (48 bits in length). By convention, MAC addresses are usually written in one of the following two formats:

- MM:MM:SS:SS:SS
- MM-MM-SS-SS-SS

The first half of a MAC address contains the ID number of the device manufacturer. These IDs are regulated by an Internet standards body. The second half of a MAC address represents the serial number assigned to the device by the manufacturer.

#### **CAM Table**

The *CAM Table* contains a mapping of learned MAC addresses to port and VLANs. The switch checks forwarding requests against the addresses contained in the CAM Table:

- If the MAC address appears in the CAM Table, the packet is forwarded to the appropriate port.
- If the MAC address does not appear in the CAM Table, or the MAC Address
  mapping has changed, the frame is duplicated and copied to all the ports. Once
  a reply is received, the CAM table is updated with the new address/VLAN port
  mapping.

## **Ethernet Configuration CLI Commands**

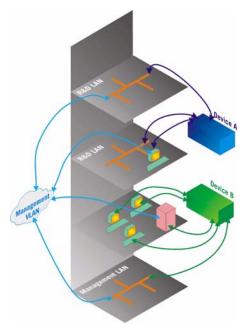
The following table contains a list of the configuration CLI commands for the Ethernet feature. The rules of syntax and output examples are all set out in detail in the Reference Guide.

| In order to                                                                                | Use the following command                                |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Set the auto negotiation mode of a port                                                    | set port negotiation                                     |
| Administratively enable a port                                                             | set port enable                                          |
| Administratively disable a port                                                            | set port disable                                         |
| Set the speed for a 10/100 port                                                            | set port speed                                           |
| Configure the duplex mode of a 10/100BASE-T port                                           | set port duplex                                          |
| Configure a name for a port                                                                | set port name                                            |
| Set the send/receive mode for flow-control frames for a full duplex port                   | set port flowcontrol                                     |
| Set the flow control advertisement for a Gigabit port when performing autonegotiation      | set port auto-negotiation-<br>flowcontrol-advertisement  |
| Set the priority level of a port                                                           | set port level                                           |
| Display settings and status for all ports                                                  | show port                                                |
| Display per-port status information related to flow control                                | show port flowcontrol                                    |
| Display the flow control advertisement for a Gigabit port used to perform auto-negotiation | show port auto-negotiation-<br>flowcontrol-advertisement |
| Display the CAM table entries for a specific port                                          | show cam                                                 |
| Display the CAM table entries for a specific MAC address                                   | show cam mac                                             |
| Clear all the CAM entries.                                                                 | clear cam                                                |
| Display the autopartition settings                                                         | show autopartition                                       |

## Ethernet Implementation in the Avaya P334T-ML

This section describes the implementation of the Ethernet feature in the Avaya P334T-ML:

- Speed 10/100 ports (1-48); 1G ports (51, 52)
- Priority queuing 10/100 ports 4 queues; 1G ports 2 queues
- CAM size 8K addresses


## **VLAN** Configuration

#### **VLAN Overview**

A VLAN is made up of a group of devices on one or more LANs that are configured so that they operate as if they form an independent LAN, when in fact they may be located on a number of different LAN segments. VLANs can be used to group together departments and other logical groups, thereby reducing network traffic flow and increasing security within the VLAN.

The figure below illustrates how a simple VLAN can connect several endpoints in different locations and attached to different hubs. In this example, the Management VLAN consists of stations on numerous floors of the building and which are connected to both Device A and Device B.





In virtual topological networks, the network devices may be located in diverse places around the LAN—such as in different departments, on different floors or in different buildings. Connections are made through software. Each network device is connected to a hub, and the network manager uses management software to assign each device to a virtual topological network. Elements can be combined into a VLAN even if they are connected to different devices.

VLANs should be used whenever there are one or more groups of network users that you want to separate from the rest of the network.

In Figure 11.2, the switch has three separate VLANs: Sales, Engineering, and Marketing (Mktg). Each VLAN has several physical ports assigned to it with PC's connected to those ports. When traffic flows from a PC on the Sales VLAN for example, that traffic is *only* forwarded out the other ports assigned to that VLAN. Thus, the Engineering and Mktg VLANs are not burdened with processing that traffic.

Figure 11.2 VLAN Switching and Bridging



### **VLAN Tagging**

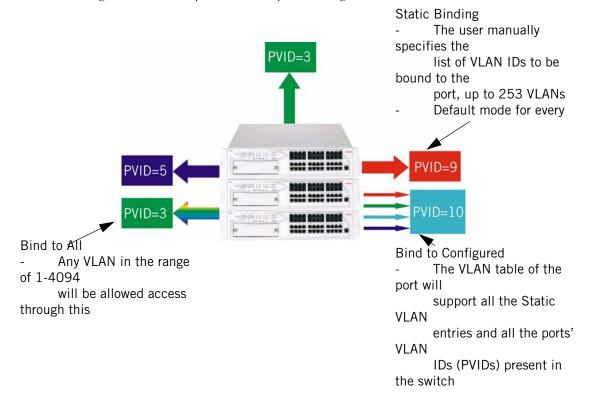
VLAN Tagging is a method of controlling the distribution of information on the network. The ports on devices supporting VLAN Tagging are configured with the following parameters:

- Port VLAN ID
- Tagging Mode

The Port VLAN ID is the number of the VLAN to which the port is assigned. Untagged frames (and frames tagged with VLAN 0) entering the port are assigned the port's VLAN ID. Tagged frames are unaffected by the port's VLAN ID.

The Tagging Mode determines the behavior of the port that processes outgoing frames:

- If Tagging Mode is set to "Clear", the port transmits frames that belong to the port's VLAN table. These frames leave the device untagged.
- If Tagging Mode is set to "IEEE-802.1Q", all frames keep their tags when they leave the device. Frames that enter the switch without a VLAN tag will be tagged with the VLAN ID of the port they entered through.


## **Multi VLAN Binding**

Multi VLAN binding (Multiple VLANs per port) allows access to shared resources by stations that belong to different VLANs through the same port. This is useful in applications such as multi-tenant networks, where each user has his a VLAN for privacy, but the whole building has a shared high-speed connection to the ISP. In order to accomplish this, P330 allows you to set multiple VLANs per port. The three available Port Multi-VLAN binding modes are:

- **Bind to All** the port is programmed to support the entire 3K VLANs range. Traffic from any VLAN is forwarded through a port defined as "Bind to All". This is intended mainly for easy backbone link configuration
- **Bind to Configured** the port supports all the VLANs configured in the switch/stack. These may be either Port VLAN IDs (PVID) or VLANs that were manually added to the switch.
- Statically Bound the port supports VLANs manually configured on it.
- ① VLAN Binding The forwarding mechanism of the P330-ML switches is based on frame's VLAN and MAC address. If a frame is destined to a known MAC address but arrives on a different VLAN than the VLAN on which this MAC address was learnt, this frame will be flooded as unknown to all ports that are bound to its VLAN. Hence, VLAN binding should be executed with care, especially on ports connected to workstations or servers.

Figure 11.3 illustrates these binding modes in P330.

Figure 11.3 Multiple VLAN Per-port Binding Modes



#### **Automatic VLAN Learning**

The Avaya P330-ML learns the VLANs automatically from traffic received on ports in "bind-to-all" mode. The maximum number of VLANs, 252, includes these dynamically learned VLANs and any VLANs you added manually.

When the VLAN list for the switch is full, no further dynamic learning or manual VLAN configuration will be possible until the dynamically learned VLANs are deleted from the table. This is accomplished with the clear dynamic-vlans CLI command.

#### **Ingress VLAN Security**

When a VLAN-tagged packet arrives at a port, only the packets with the VLAN tag corresponding to the VLANs which are configured on the port will be accepted. Packets with other VLAN tags will be dropped.

#### **VLAN CLI Commands**

The following table contains a list of the CLI commands for the VLAN feature. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                                                                                    | Use the following command   |
|----------------------------------------------------------------------------------------------------------------|-----------------------------|
| Assign the Port VLAN ID (PVID)                                                                                 | set port vlan               |
| Define the port binding method                                                                                 | set port vlan-binding-mode  |
| Define a static VLAN for a port                                                                                | set port static-vlan        |
| Configure the tagging mode of a port                                                                           | set trunk                   |
| Create VLANs                                                                                                   | set vlan                    |
| Display the port VLAN binding mode settings                                                                    | show port vlan-binding-mode |
| Display VLAN tagging information of the ports, port binding mode, port VLAN ID and the allowed VLANs on a port | show trunk                  |
| Display the VLANs configured in the switch.                                                                    | show vlan                   |
| Clear VLAN entries                                                                                             | clear vlan                  |

| In order to                                                         | Use the following command |
|---------------------------------------------------------------------|---------------------------|
| Clear a VLAN statically configured on a port                        | clear port static-vlan    |
| Clear the dynamic vlans learned by the switch from incoming traffic | clear dynamic vlans       |
| Display the MAC addresses learned on a specific VLAN                | show cam vlan             |

## VLAN Implementation in the Avaya P334T-ML

This section describes the implementation of the VLAN feature in the Avaya P334T-ML: No. of VLANs — 252 tagged VLANs ranging from 1 to 3071

## Port Based Network Access Control (PBNAC)

Port Based Network Access Control (IEEE 802.1X) is a method for performing authentication to obtain access to IEEE 802 LANs. The protocol defines an interaction between 3 entities:

- Supplicant an entity at one end of a point-to-point LAN segment that is being authenticated by an authenticator attached to the other end of that link.
- Authenticator an entity at one end of a point-to-point LAN segment that facilitates authentication of the entity attached to the other end of that link; in this case, the P330.
- Authentication (RADIUS) Server an entity that provides an authentication service to an authenticator. This service determines, from the credentials provided by the supplicant, whether the supplicant is authorized to access the services provided by the authenticator.

The process begins with the supplicant trying to access a certain restricted network resource, and upon successful authentication by the authentication server, the supplicant is granted access to the network resources.

#### How "Port Based" Authentication Works

802.1X provides a means of authenticating and authorizing users attached to a LAN port and of preventing access to that port in cases where the authentication process fails. The authentication procedure is port based, which means:

- access control is achieved by enforcing authentication on connected ports
- if an end-point station that connects to a port is not authorized, the port state is set to "unauthorized" which closes the port to any traffic.
- As a result of an authentication attempt, the P330 port can be either in a "blocked" or a "forwarding" state.

802.1X interacts with existing standards to perform its authentication operation. Specifically, it makes use of Extensible Authentication Protocol (EAP) messages encapsulated within Ethernet frames (EAPOL), and EAP over RADIUS for the communication between the Authenticator and the Authentication Server.

## PBNAC Implementation in the P330 Family

This section lists the conditions that govern the implementation of the 802.1X standard in the P330 line:

- You can configure PBNAC on the 10/100 Mbps Ethernet ports only.
- PBNAC can work only if a RADIUS server is configured on the P330 and the RADIUS server is carefully configured to support 802.1X.
- PBNAC and port/intermodule redundancy can co-exist on the same ports.
- PBNAC and LAGs can coexist on the same ports.
- PBNAC and Spanning Tree can be simultaneously active on a module.
- ① If either PBNAC or STP/RSTP are in a blocking state, the final state of the port

- will be blocked.
- When PBNAC is activated, the application immediately places all ports in a blocking state unless they were declared "Force Authenticate". They will be reverted to "Forwarding" state only when the port is authorized by the RADIUS server.
- The actual state of ports configured as "Force Authenticate" is determined by the STA.

### Configuring the P330 for PBNAC

This section lists the basic tasks required to configure a P330 stack for PBNAC. To configure P330 for PBNAC, do the following:

- Configure a RADIUS server on a network reachable from the P330:
  - Create user names and passwords for allowed users.
  - Make sure the EAP option is enabled on this server.
- Configure the P330 for RADIUS:
  - Configure RADIUS parameters.
  - Enable the RADIUS feature.
  - Configure the port used to access the RADIUS server as "force-authorized."
- ① You can configure on the RADIUS server a PVID, static VLAN binding and port level for each authenticated user. If the port that the user is connected to is authorized, those parameters will be assigned to the port.
- Connect the Supplicant i.e., Windows XP clients directly to the P330.
- Verify that the dot1x port-control is in auto mode.
- Set the dot1x system-auth-config to enable; the authentication process starts:
  - The supplicant is asked to supply a user name and password.
  - If authentication is enabled on the port, the Authenticator initiates authentication when the link is up.
  - Authentication Succeeds: after the authentication process completes, the supplicant will receive a Permit/Deny notification.
  - Authentication Fails: authentication will fail when the Supplicant fails to respond to requests from the Authenticator, when management controls prevent the port from being authorized, when the link is down, or when the user supplied incorrect logon information.

## **PBNAC CLI Commands**

The following table contains a list of the CLI commands for the PBNAC feature. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                                                                                                                                     | Use the following command  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Disable dot1x on all ports and return to default values                                                                                                         | clear dot1x config         |
| Display the system dot1x capabilities, protocol version, and timer values                                                                                       | show dot1x                 |
| Display all the configurable values associated with the authenticator port access entity (PAE) and backend authenticator                                        | show port dot1x            |
| Display all the port dot1x statistics                                                                                                                           | show port dot1x statistics |
| Set the minimal idle time between authentication attempts                                                                                                       | set dot1x quiet-period     |
| Set the time interval between attempts to access the Authenticated Station                                                                                      | set dot1x tx-period        |
| Set the server retransmission timeout period for all ports                                                                                                      | set dot1x server-timeout   |
| Set the authentication period (an idle time between re-authentication attempts)                                                                                 | set dot1x re-authperiod    |
| Set the authenticator-to-supplicant retransmission timeout period (the time for the switch to wait for a reply from the Authenticated Station)                  | set dot1x supp-timeout     |
| Set the max-req for all ports (the maximal number of times the port tries to retransmit requests to the Authenticated Station before the session is terminated) | set dot1x max-req          |

| In order to                                                                                                                                                | Use the following command                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Globally enable/disable 802.1x                                                                                                                             | set dot1x system-auth-control enable/disable |
| Set dot1x control parameter per port                                                                                                                       | set port dot1x port-control                  |
| Initialize port dot1x                                                                                                                                      | set port dot1x initialize                    |
| Set the port to re-authenticate                                                                                                                            | set port dot1x re-authenticate               |
| Set dot1x re-authentication mode per port                                                                                                                  | set port dot1x re-authentication             |
| Set the 802.1x quiet period per port                                                                                                                       | set port dot1x quiet-period                  |
| Set the transmit period per port (a time interval between attempts to access the Authenticated Station)                                                    | set port dot1x tx-period                     |
| Set the supp-timeout per port (a time for the port to wait for a reply from the Authenticated Station)                                                     | set port dot1x supp-timeout                  |
| Set the server-timeout per port (a time to wait for a reply from the Authentication Server)                                                                | set port dot1x server-timeout                |
| Set the re-authentication period per<br>port (an idle time between re-<br>authentication attempts)                                                         | set port dot1x re-authperiod                 |
| Set the max-req per port (the maximal number of times the port tries to retransmit requests to the Authenticated Station before the session is terminated) | set port dot1x max-req                       |

# **Spanning Tree Protocol**

#### **Overview**

Avaya P330 devices support both common Spanning Tree protocol (802.1d) and the enhanced Rapid Spanning Tree protocol (802.1w). The 802.1w is a faster and more sophisticated version of the 802.1d (STP) standard. Spanning Tree makes it possible to recover connectivity after an outage within a minute or so. RSTP, with its "rapid" algorithm, can restore connectivity to a network where a backbone link has failed in much less time.

In order to configure the switch to either common Spanning Tree or Rapid Spanning Tree protocol, use the set spantree version command.

#### **Spanning Tree Protocol**

The Spanning Tree Algorithm ensures the existence of a loop-free topology in networks that contain parallel bridges. A loop occurs when there are alternate routes between hosts. If there is a loop in an extended network, bridges may forward traffic indefinitely, which can result in increased traffic and degradation in network performance.

The Spanning Tree Algorithm:

- Produces a logical tree topology out of any arrangement of bridges. The result is a single path between any two end stations on an extended network.
- Provides a high degree of fault tolerance. It allows the network to automatically reconfigure the spanning tree topology if there is a bridge or data-path failure.

The Spanning Tree Algorithm requires five values to derive the spanning tree topology. These are:

- 1 A multicast address specifying all bridges on the extended network. This address is media-dependent and is automatically determined by the software.
- 2 A network-unique identifier for each bridge on the extended network.
- A unique identifier for each bridge/LAN interface (a port).
- 4 The relative priority of each port.
- 5 The cost of each port.

After these values are assigned, bridges multicast and process the formatted frames (called Bridge Protocol Data Units, or BPDUs) to derive a single, loop-free topology throughout the extended network. The bridges exchange BPDU frames quickly, minimizing the time that service is unavailable between hosts.

## **Spanning Tree per Port**

The Spanning Tree can take up to 30 seconds to open traffic on a port. This delay can cause problems on ports carrying time-sensitive traffic. You can therefore enable/disable Spanning Tree in P330 on a per-port basis to minimize this effect.

About the 802.1w Standard

The enhanced feature set of the 802.1w standard includes:

- Bridge Protocol Data Unit (BPDU) type 2
- New port roles: Alternate port, Backup port
- Direct handshaking between adjacent bridges regarding a desired topology change (TC). This eliminates the need to wait for the timer to expire.
- Improvement in the time it takes to propagate TC information. Specifically, TC information does not have to be propagated all the way back to the Root Bridge (and back) to be changed.
- Origination of BPDUs on a port-by-port basis.

#### Port Roles

At the center of RSTP—specifically as an improvement over STP (802.1d)—are the roles that are assigned to the ports. There are four port roles:

- Root port port closest to the root bridge
- Designated port corresponding port on the remote bridge of the local root port
- Alternate port an alternate route to the root
- Backup port an alternate route to the network segment

The RSTP algorithm makes it possible to change port roles rapidly through its fast topology change propagation mechanism. For example, a port in the "blocking" state can be assigned the role of "alternate port." When the backbone of the network fails the port may be rapidly changed to forwarding.

Whereas the STA *passively* waited for the network to converge before turning a port into the forwarding state, RSTP *actively* confirms that a port can safely transition to forwarding without relying on any specific, programmed timer configuration.

RSTP provides a means of fast network convergence after a topology change. It does this by assigning different treatments to different port types. The port types and the treatment they receive follow:

- Edge ports Setting a port to "edge-port" admin state indicates that this port is connected directly to end stations that cannot create bridging loops in the network. These ports transition quickly to forwarding state. However, if BPDUs are received on an Edge port, it's operational state will be changed to "non-edge-port" and bridging loops will be avoided by the RSTP algorithm. The default admin state of all ports is "edge-port".
- You must manually configure uplink and backbone ports (including LAG logical ports) to be "non-edge" ports, using the CLI command set port edge admin state.

 Point-to-point Link ports — This port type applies only to ports interconnecting RSTP compliant switches and is used to define whether the devices are interconnected using shared Ethernet segment or point-to-point Ethernet link. RSTP convergence is faster when switches are connected using point-to-point links. The default setting for all ports – automatic detection of point-to-point link – is sufficient for most networks.

#### Spanning Tree Implementation in the P330 Family

RSTP is implemented in P330 family of products so that it is interoperable with the existing implementation of STP. In order to configure the switch to either common Spanning Tree or Rapid Spanning Tree protocol, use the set spantree version command.

• After upgrading to software version 4.0, the default is spanning tree version STP. The default after NVRAM INIT remains STP.

The balance of this section lists the conditions and limitations that govern the implementation of Spanning Tree in the P330 line.

- RSTP's fast convergence benefits are lost when interacting with legacy (STP) bridges.
- When RSTP detects STP Bridge Protocol Data Units (BPDUs type 1) on a specific port, it will begin to "speak" 802.1d on this port only. Specifically, this means:
  - 802.1d bridges will ignore RSTP BPDUs and drop them.
  - 802.1d bridges will send 802.1d format BPDUs back to the switch.
  - The switch will change to 802.1d mode for that port only.

The P330 configured to RSTP is therefore able to simultaneously work with other switches implementing either RSTP or STP without specific user intervention.

- Spanning Tree configuration is performed on the stack level.
- If you do not upgrade all switches in the stack to firmware version 4.0, spanning tree will continue its normal operation. However, configuring Spanning Tree will not be possible until all switches are upgraded to version 4.0.
- RSTP is interoperable with P330 Port Redundancy and PBNAC applications. If either RSTP or PBNAC put the port in blocking, its final state will be "blocking".
- STP and Self Loop Discovery (SLD) are incompatible. However, If Spanning Tree is set to rapid-spanning-tree version, there is no need to use the Self-loop-discovery feature; the RSTP algorithm avoids loops generated by the IBM token ring cabling.
- The 802.1w standard defines differently the default path cost for a port compared to STP (802.1d). In order to avoid network topology change when migrating to RSTP, the STP path cost is preserved when changing the spanning tree version to RSTP. You can use the default RSTP port cost by using the CLI command set port spantree cost auto.

# **Spanning Tree Protocol CLI Commands**

The following table contains a list of CLI commands for the Spanning Tree feature. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                                 | Use the following command                      |
|-------------------------------------------------------------|------------------------------------------------|
| Enable/Disable the spanning tree application for the switch | set spantree                                   |
| Set the bridge priority for spanning tree                   | set spantree priority                          |
| Set the RSTP bridge spanning tree max-age parameter         | set spantree max-age                           |
| Set the RSTP bridge hello-time parameter                    | set spantree hello-time                        |
| Set the RSTP bridge forward-delay time parameter            | set spantree forward-delay                     |
| Select between STP operation or RSTP switch operation       | set spantree version                           |
| Display the bridge and per-port spanning tree information   | show spantree                                  |
| Set the TX hold count for the STA                           | set spantree priority                          |
| Add a port to the spanning tree application                 | set port spantree enable                       |
| Remove a port from the spanning tree application            | set port spantree disable                      |
| Set the port spantree priority level                        | set port spantree priority                     |
| Set the cost of a port                                      | set port spantree cost                         |
| Set the port as an RSTP port (and not as a common STA port) | set port spantree force-protocol-<br>migration |
| Display a port's edge admin and operational RSTP state      | show port edge state                           |
| Set the port as an RSTP edge port or non-edge port          | set port edge admin state                      |

| In order to                                                      | Use the following command            |
|------------------------------------------------------------------|--------------------------------------|
| Set the port point-to-point admin status                         | set port point-to-point admin status |
| Show the port's point-to-point admin and operational RSTP status | show port point-to-point status      |

The MAC security function is intended to filter incoming frames (from the line) with an unauthorized source MAC address (SA).

#### **MAC Security Implementation in P330**

When a frame is received on a secured port, its source MAC address is checked against the secured MAC Address Table. If either the source MAC address is not found there, or it is found but with a different ingress port location, then the frame is rejected. Tagged traffic from a secured MAC address on the ingress port on which it was learned is accepted by the switch if the VLAN binding mode of the traffic is the same as the VLAN binding mode of the ingress port.

The P330 can be configured to take one of the following actions when an attempted intrusion occurs:

- **Drop** Drops the packets for 5 seconds.
- **Drop and notify** Drops the packets for 5 seconds and sends a notification to the management station.
- **Disable and notify** Permanently disables the packets and sends a notification to the management station.

When the P330 is configured to send traps to report attempted intrusion, to prevent the flooding of the Console's trap log / network, the Agent sends an intruder alert every 5 seconds for the first 3 times a specific intruder is detected on a port, and then every 15 minutes if the intrusion continues.

User should first enable the MAC security global mode (set security mode) and then configure the ports which should be secured (set port security). When setting a port to secured, the MAC addresses that a currently learnt on this port are preserved and considered as secure MAC, unless they are removed using clear secure mac command. Individual secure MACs can also be added.

- A MAC address can be added to more than one port on the device. This allows a specific device to communicate with the switch via more than one ingress port. However the number of secured MAC addresses on any module cannot exceed 1,024.
- Ports that are members of a port redundancy scheme should not be also configured as secure ports.

# **MAC Security CLI Commands**

The following table contains a list of the CLI commands for the MAC Security feature. The rules of syntax and output examples are all set out in detail in the *P330 Reference Guide*.

| In order to                                                      | Use the following command     |
|------------------------------------------------------------------|-------------------------------|
| Enable/Disable MAC security for the switch                       | set security mode             |
| Display the MAC security mode for the switch                     | show security mode            |
| Enable/Disable MAC security for a specific port                  | set port security             |
| Display the MAC security mode for a port                         | show port security            |
| Specify the action taken when there is a security violation      | set security violation action |
| Add a MAC address to a port's list of allowed MAC addresses      | set secure mac                |
| Remove a MAC address from a port's list of allowed MAC addresses | clear secure mac              |
| Display a port's list of allowed MAC addresses                   | show secure mac               |

# **MAC** Aging

#### **Overview**

The MAC Aging feature allows the user to configure a time interval after which unused entries in the MAC Table will be deleted.

#### Configuring the P330 for MAC Aging

This section describes the configuration of the P330 for the MAC Aging functionality.

- MAC Aging is configured on the stack level.
- MAC Aging can be globally enabled/disabled using the set mac-aging command.
  - After firmware upgrade to version 4.0, MAC Aging default state is disabled.
  - After NVRAM INIT, MAC Aging default state is enabled.
- "mac-aging-time" is set in minutes:
  - Default=5 minutes
  - Minimum time=1 minute; maximum time= 3600 min
- ① On a mixed P330/P330-ML stack, MAC Aging—if enabled—will apply only to P330-ML modules in the stack.

## **MAC Aging CLI Commands**

The following table contains a list of the CLI commands for the MAC Aging feature. The rules of syntax and output examples are all set out in detail in the *P330 Reference Guide*.

| In order to                                          | Use the following command |
|------------------------------------------------------|---------------------------|
| Enable/Disable MAC Aging                             | set mac-aging             |
| Set the MAC aging time in minutes (0=don't age).     | set mac-aging-time        |
| Display the current status of the MAC aging function | show mac-aging            |
| Display the MAC aging time in minutes.               | show mac-aging-time       |

## LAG

#### LAG Overview

A LAG uses multiple ports to create a high bandwidth connection with another device. For example: Assigning four 100BASE-T ports to a LAG on an Avaya P330 allows the switch to communicate at an effective rate of 400 Mbps with another switch.

LAGs provide a cost-effective method for creating a high bandwidth connection. LAGs also provide built-in redundancy for the ports that belong to a LAG. If a port in a LAG fails, its traffic is directed to another port within the LAG.

The behavior of the LAG is derived from the base port (the first port that becomes a LAG member). The attributes of the base port, such as port speed, VLAN number, etc., are applied to all the other member ports in the LAG.

When created, each LAG is automatically assigned a logical port number (usually designated 10x). This logical port number can then be used as any regular panel port for all configuration required for the LAG (Spanning Tree, Redundancy, etc.)

① In the P330-ML switches you need to erase **all** ports in t.he LAG in order to remove it.

#### **LAG CLI Commands**

The following table contains a list of the CLI commands for the LAG feature. The rules of syntax and output examples are all set out in detail in the *P330 Reference Guide*.

| In order to                                                                       | Use the following command |
|-----------------------------------------------------------------------------------|---------------------------|
| Enable or disable a Link<br>Aggregation Group (LAG) logical<br>port on the switch | set port channel          |
| Display Link Aggregation Group (LAG) information for a specific switch or port    | show port channel         |

This section describes the implementation of the LAG feature in the P330 Family of products.

With the P334T-ML, you can aggregate the two GBIC ports to form a LAG, you can aggregate the bandwidths of 6 groups of up to 8 10/100BaseT ports in a LAG, for a maximum of 7 LAGs per switch.

The relationship between the P334T-ML Port Numbers and the LAG logical Port Number that will be assigned to each LAG is depicted below.

| Panel Ports in the LAG | Max. Number of LAGs | LAG Logical Port Number |
|------------------------|---------------------|-------------------------|
| 1-4, 25-28             | 1                   | 101                     |
| 5-8, 29-32             | 1                   | 102                     |
| 9-12, 33-36            | 1                   | 103                     |
| 13-16, 37-40           | 1                   | 104                     |
| 17-20, 41-44           | 1                   | 105                     |
| 21-24, 45-48           | 1                   | 106                     |
| 51,52                  | 1                   | 107                     |

# Port Redundancy

Port redundancy involves the duplication of devices, services, or connections, so that, in the event of a failure, the redundant device, service, or connection can take over for the one that failed.

In addition to Link Aggregation Groups—which comprise the basic redundancy mechanism within the switch—the P330 offers an additional port redundancy scheme. To achieve port redundancy, you can define a redundancy relationship between any two ports in a stack. One port is defined as the primary port and the other as the secondary port. If the primary port fails, the secondary port takes over. You can configure up to 20 pairs of ports (or LAGs) per stack for port redundancy, and 1 pair per stack for intermodule redundancy. Each pair contains a primary and secondary port. You can configure any type of port to be redundant to any other.

## **Port Redundancy Operation**

The Port Redundancy feature supports up to 20 pairs of ports per stack. The redundant or secondary port takes over when the primary port link is down. Port redundancy provides for the following in the P330:

- Switchback from the secondary to primary port is allowed
- Switching time intervals can be set by the user
- ① Port Redundancy interworks with the Spanning Tree Algorithm.

The Port Redundancy feature functions as follows:

- Port Redundancy enables the user to establish 20 pairs of ports. Within each
  pair, primary and secondary ports are defined. To prevent loops, only one port
  is enabled at a time.
- Following initialization, the primary port is enabled and the secondary port is disabled.
  - If the active port link fails, the system enables the secondary port.
  - If the secondary port is enabled and the primary port link becomes available again, the system will "switchback" to the primary port, unless configured otherwise by the user.
- Two timers are available:
  - "min-time-between-switchovers" —minimum time (in seconds) between the failure of the primary port link and switchover to the secondary (backup) port.
- ① The first time the primary port fails, the switchover is immediate. This timer applies to subsequent failures.
  - "switchback-interval" the minimum time (in seconds) that the primary port link has to be up (following failure) before the system switches back to the primary port. The "none" parameter, if configured, prevents switching back to the primary.

#### **Intermodule Port Redundancy**

The intermodule port redundancy feature supports one pair of redundant ports per stack. The secondary port is activated:

- when the primary port link is down, or
- when the module in the stack holding the primary port has been powered down or removed.

Switching time for intermodule port redundancy is approximately 1 second.

- Defining intermodule port redundancy on ports with no link causes both ports to be disabled. You should connect the link prior to attempting to define intermodule port redundancy.
- ① Once a port has been designated in a redundancy scheme, either as a primary or a secondary port, it can not be designated in any other redundancy scheme.
- ① Intermodule Port Redundancy does not interworks with the Spanning Tree Algorithm.

#### **Port Redundancy CLI Commands**

The following table contains a list of the CLI commands for the Redundancy feature. The rules of syntax and output examples are all set out in detail in the P330 Reference Guide.

| In order to                                                  | Use the following command           |
|--------------------------------------------------------------|-------------------------------------|
| Define or remove port redundancy schemes                     | set port redundancy                 |
| Enable the defined port redundancy schemes                   | set port redundancy enable          |
| Disable the defined port redundancy schemes                  | set port redundancy disable         |
| Define the timers that control the port redundancy operation | set port redundancy-interval        |
| Display information on port redundancy schemes.              | show port redundancy                |
| Define the switch's unique intermodule redundancy scheme     | set intermodule port redundancy     |
| Clear the intermodule redundancy                             | set intermodule port redundancy off |

| In order to                                                     | Use the following command        |
|-----------------------------------------------------------------|----------------------------------|
| display the intermodule redundancy entry defined for the switch | show intermodule port redundancy |

#### Overview

IP Multicast is a method of sending a single copy of an IP packet to multiple destinations. It can be used by different applications including video streaming and video conferencing.

The Multicast packet is forwarded from the sender to the recipients, duplicated only when needed by routers along the way and sent in multiple directions such that it reaches all the members of the Multicast group. Multicast addresses are a special kind of IP addresses (class D), each identifying a multicast group. Stations join and leave multicast groups using IGMP. This is a control-plane protocol through which IP hosts register with their router to receive packets for certain multicast addresses.

IP multicast packets are transmitted on LANs in MAC multicast frames. Traditional LAN switches flood these multicast packets like broadcast packets to all stations in the VLAN. In order to avoid sending multicast packets where they are not required, multicast filtering functions may be added to the layer 2 switches, as described in IEEE standard 802.1D. Layer 2 switches capable of multicast filtering send the multicast packets only to ports connecting members of that multicast group. This is typically based on IGMP snooping.

The Avaya P330 supports multicast filtering. The P330 learns which switch ports need to receive which multicast packets and configures the necessary information into the switch's hardware tables. This learning is based on IGMP (version 1 or 2) snooping.

The multicast filtering function in the P330 is transparent to the IP hosts and routers. It does not affect the forwarding behavior apart from filtering multicast packets from certain ports where they are not needed. To the ports that do get the multicast, forwarding is performed in the same way as if there was no filtering, and the multicast packet will not be sent to any ports that would not receive it if there was no filtering.

The multicast filtering function operates per VLAN. A multicast packet arriving at the device on a certain VLAN will be forwarded only to a subset of the ports of that VLAN. If VLAN tagging mode is used on the output port, then the multicast packet will be tagged with the same VLAN number with which it arrived. This is interoperable with multicast routers that expect Layer 2 switching to be done independently for each VLAN.

IP Multicast Filtering configuration is associated with the setting up of three timers:

- The **Router Port Pruning** timer ages out Router port information if IGMP queries are not received within the configured time.
- The Client Port Pruning time is the time after the P330 switch reset that the filtering information is learned by the switch but not configured on the ports.
- The **Group Filtering Delay** time is the time that the switch waits between

becoming aware of a Multicast group on a certain VLAN and starting to filter traffic for this group.

#### **IP Multicast CLI Commands**

The following table contains a list of the CLI commands for the IP Multicast feature. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                                                 | Use the following command                                |
|-----------------------------------------------------------------------------|----------------------------------------------------------|
| Enable or disable the IP multicast filtering application                    | set intelligent-multicast                                |
| Define aging time for client ports                                          | set intelligent-multicast client port pruning time       |
| Define aging time for router ports                                          | set intelligent-multicast router port pruning time       |
| Define group filtering time delays                                          | set intelligent-multicast group-<br>filtering delay time |
| Display the status IP multicast filtering application                       | show intelligent-multicast                               |
| Shows whether the connected unit's hardware supports IP multicast filtering | show intelligent-multicast<br>hardware-support           |

# IP Multicast Implementation in the Avaya P334T-ML

This section describes the implementation of the IP multicast feature in the Avaya P334T-ML:

• No. of multicast groups — 255

## **RMON**

#### RMON Overview

RMON, the internationally recognized network monitoring standard, is a network management protocol that allows network information to be gathered at a single workstation. You can use RMON probes to monitor and analyze a single segment only. When you deploy a switch on the network, there are additional components in the network that cannot be monitored using RMON. These components include the switch fabric, VLAN, and statistics for all ports.

RMON is the internationally recognized and approved standard for detailed analysis of shared Ethernet media. It ensures consistency in the monitoring and display of statistics between different vendors.

RMON's advanced remote networking capabilities provide the tools needed to monitor and analyze the behavior of segments on a network. In conjunction with an RMON agent, RMON gathers details and logical information about network status, performance and users running applications on the network.

#### RMON has two levels:

- RMON I analyzes the MAC layer (Layer 2 in the OSI seven-layer model).
- RMON 2 analyzes the upper layers (Layers 3 and above).
- ① RMON 2 is not supported in this version of the P330.

An RMON agent is a probe that collects information about segments, hosts and traffic and sends the information to a management station. You use specific software tools to view the information collected by the RMON agent on the management station.

#### **RMON CLI Commands**

| In order to                           | Use the following command |
|---------------------------------------|---------------------------|
| Create an RMON history entry          | rmon history              |
| Delete an existing RMON history entry | no rmon history           |
| Create a new RMON alarm entry         | rmon alarm                |
| Delete an existing RMON alarm entry   | no rmon alarm             |
| Create an RMON event entry            | rmon event                |

| In order to                                                                                                                 | Use the following command |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Delete an existing RMON event entry                                                                                         | no rmon event             |
| Display the RMON statistics counters for a certain interface number according to the MIB-2 interface table numbering scheme | show rmon statistics      |
| Display the most recent RMON history log for a given History Index                                                          | show rmon history         |
| Display the parameters set for a specific alarm entry that was set using the rmon alarm command                             | show rmon alarm           |
| Display the parameters of an Event entry defined by the rmon event command or Device Manager                                | show rmon event           |
| Clears all RMON counters in the stack                                                                                       | clear rmon statistics     |

# **SMON**

#### SMON Overview

SMON is Avaya's standard-setting switch monitoring technology that has now been adopted as IETF standard RFC 2613. SMON extends the RMON standard to provide the switch monitoring tools and features you need to analyze the switched network and all its components.

SMON provides the basis for top-down network monitoring. Top-down monitoring starts when the you notice particular traffic flow patterns in a global view of the network. The network manager can progressively focus in and find the specific source or sources of the traffic.

Using this method, the amount of information the network manager must assess is kept to a minimum. Top-down monitoring is robust enough to enable control of even the most complex and sophisticated networks.

SMON is an extension of the RMON standard. SMON adds to the monitoring capabilities of RMON in the following ways:

- It provides additional tools and features for monitoring in the switch environment.
- It allows monitoring of ATM networks that are based on cells rather than packets.
- It provides a global view of traffic flow on a network with multiple switches.

# SMON monitoring provides:

- A global view of traffic for all switches on the network
- An overall view of traffic passing through a specific switch
- Detailed data of the hosts transmitting packets or cells through a switch
- An analysis of traffic passing through each port connected to a switch, and
- A view of traffic between various hosts connected to a switch.

SMON extends both RMON I for the MAC layer, and RMON 2 for the network layer and higher. SMON monitoring collects and displays data in real-time.

## Top-down view of all traffic:

- Network view for selected switches
- Network view for selected ports
- VLAN view
- History
- ① In order to use SMON, you need to install the SMON license on the P330 switch and use Avaya MSNM with SMON. See "Basic Switch Configuration" in the Avaya P330 Installation and Maintenance Guide.
- ① SMON for the network layer is not supported in this version of the P330.

# Port Mirroring Configuration

#### **Port Mirroring Overview**

Port Mirroring copies all received and transmitted packets (including local traffic) from a source port to a predefined destination port, in addition to the normal destination port of the packets. Port Mirroring, also known as "sniffing" is useful in debugging network problems.

Port mirroring allows you to define a source port and a destination port, regardless of port type. For example, a 10 Mbps and a 100 Mbps port can form a valid source/destination pair. You cannot, however define the port mirroring source and destination ports as the same port.

You can define one source port and one destination port on each C460 chassis for either received – Rx – or transmitted and received – Tx + Rx – traffic.

#### Port Mirroring CLI commands

| In order to                                                       | Use the following command |
|-------------------------------------------------------------------|---------------------------|
| Define a port mirroring source-<br>destination pair in the switch | set port mirror           |
| Display port mirroring information for the switch                 | show port mirror          |
| Cancel port mirroring                                             | clear port mirror         |

## **Port Mirroring Constraints**

Note the following limitations:

- The VLAN binding parameters of the source and destination ports must be identical.
- Ports which are members in a Link Aggregation Group (LAG) cannot also be used as Port Mirroring Destination or Source ports.
- Within the P334T-ML switch, port mirroring can be configured between ports in the three following groups:
  - **—** 1-12, 25-36
  - **—** 13-24, 37-48
  - **—** 51, 52
- On the stack level, port mirroring pairs can be configured between any Giga port, and between any Giga port on the P334T-ML and any 10/100Mbps port not residing on a P334T-ML.

108

# Multilayer Policy

Multilayer Policy is a set of features for enforcing QoS and Access Control policy on routed and switched packets. One of its major goals is supporting Differentiated Services for Avaya VoIP solutions.

#### **About Multilayer Policy**

Multilayer Policy is enforced on the 10/100 Mbps ports of a P334T-ML module. In general, Multilayer Policy consists of the following parts:

- Policy Lists groupings of Access lists, DSCP-to-COS maps, and Trust mode attributes.
- Access Lists ordered lists of classification rules applied to frames received and action pairs determining how they are to be handled.
- DSCP-to-COS Maps mapping function that set the frame 802.1p priority according to its DSCP value.
- Trust Modes policy-list attribute; either "untrusted," "trust-COS," or "trust-DSCP."

#### Access Lists

Access Lists (ACL) are at the center of Multilayer Policy. Typically, users specify their classification demands by defining Access Lists. An Access List is an ordered list of classification rules and actions. For each frame received by the system, the Multilayer Policy application tries the classification rules—one-by-one—and executes the action associated with the first rule that matches.

Rules are based on the following properties:

- IP:IP version 4 packets with specific source and destination addresses (+ wildcards)
- IP version 4 packets with a specific protocol number 0 to 255 with specific source and destination addresses (+ wildcards).
- TCP:TCP/IPv4 packets with specific source and destination addresses (+ wildcards) and source and destination ports (+port ranges). The keyword "established" enables "permit" for TCP packets with "ack" flag set. E.g., this will not allow matching packets that open TCP connections.
- UDP:UDP/IPv4 packets with specific source and destination addresses (+ wildcards) and source and destination ports (+ port ranges).

Actions supported include:

- permit allows the packet through
- deny drops the packet
- deny-and-notify drops the packet and sends an SNMP trap
- fwd0, fwd1 .... fwd7 assigns priority to the packet

DSCP-to-COS Maps

DSCP-to-COS maps set the frame 802.1p priority according to the DSCP priority value. For each DSCP value, the map contains a corresponding COS. The map changes the COS value for frames that match an active Access List rule with a "permit" action.

The following conditions apply to DSCP-to-COS maps:

- DSCP-to-COS maps are defined within the Policy Lists.
- Only packets that match an Access List rule with a "permit" action can be modified based on a DSCP-to-COS map.
- Actions supported per DSCP include: Fwd 0, Fwd1 ....Fwd7, Forward no change.

#### Trust Modes

P334T-ML supports the following Trust Mode values:

- "untrusted" forwards the packet with 802.1p priority=0.
- "trust-cos" forwards the packet with its original 802.1p priority (default).
- "trust-dscp" forwards the packet with an 802.1p priority obtained from the DSCP-to-COS mapping table.

#### Multilayer Policy Implementation in the P334T-ML

Each P334T-ML can store up to 20 Policy Lists. These lists consist of: Access Lists, DSCP-to-COS Maps, and Trust Modes.

Avaya P334T-ML supports two policy types:

- "Router" the switch enforces the active Policy List only on routed packets. This applies to P334T-ML switches in "Router" device mode.
- "All" the switch enforces the active Policy List on all packets that enter through the Fast Ethernet ports. This applies to P334T-ML switches in "Router" or "Layer2" device mode.

"All" is the policy type available when the P334T-ML device mode is "Layer2."

There can be only one active Policy List per module with either policy type.

The following conditions apply to Policy Lists:

- Policy Lists can be defined in the "switch" context when the P334T-ML is in "Layer2" device-mode or in the "router" context when the P334T-ML is in "Router" device-mode.
- Policy Lists are shared by Layer 2 and Layer 3 applications.
- The maximum number of rules per L3 Access List is 9999 when the policy type is "Router". If the Policy List is to be applied to Layer 2 as well – policy type "all", the maximum number of rules per list is 254.

- TCP/UDP port ranges can only have sizes of 2<sup>n</sup>, where the lower port of the range is aligned to the range number.
  - For example, for a range of 32 ports  $(2^5)$ , the lower ports can have the value of 32, 64, 96, etc.
  - This limitation does not apply when the device is in "Router" policy type.
- Only L3 rules (based on Src/Dest IP address) will be enforced on IP fragments.
  Therefore, if an L4 rule is applicable to an IP fragment, the fragment will be dropped.
- The following rules are *not* supported for TCP/UDP port numbers:
  - "lower then"
  - "greater then"
- If a packet matches a rule with a "permit" action and <u>subsequently</u> a rule with
   "fwd..." action, the packet's priority will be changed to the one specified in the
   second rule, instead of being forwarded with the original priority as per
   "permit" action
  - This limitation is relevant only for Layer 2 policy (i.e., when the policy type is "all").

#### Configuring the P334T-ML for Multilayer Policy

This section describes the configuration of the P334T-ML for Multilayer Policy functionality.

## Configuration Requirements

The following specific requirements impact on the configuration of Multilayer Policy in an Avaya P334T-ML:

- Multilayer Policy must be configured separately on each P334T-ML in the stack. This is done by opening a "session" to the module.
- If the device Mode is "Layer 2," the policy commands will appear in the L2 CLI tree; if the Device Mode is "Router," the commands will appear in the L3 CLI tree.
- Policy List validation will be performed during list activation.
- A CLI command for policy simulation is available.

# Configuration File Management

The following specific requirements impact on the management of the Multilayer Policy configuration file:

 Unlike other Layer 2 settings, the Layer 2 policy is not automatically saved in NVRAM. In order to save the Layer 2 or Layer 3 policy configuration, the user must copy the running configuration to the startup configuration file. To do this, use the command copy running-config startup-config.

# **Multilayer Policy CLI Commands**

The following table contains a list of the CLI commands for the Multilayer Policy feature. The rules of syntax and output examples are all set out in detail in the *P330 Reference Guide*.

| In order to                                                                                                     | Use the following command     |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------|
| Set the default action for a given Policy List.                                                                 | ip access-default-action      |
| Create an access-list rule in a specific Access List.                                                           | ip access-list                |
| Set the source list, destination list,<br>and destination module for copying<br>an entire Policy List           | ip access-list-copy           |
| Set the DSCP-to-COS mapping.<br>Based on range and action<br>parameters, system will apply<br>mapping to frames | ip access-list-dscp operation |
| Designates which original frame fields influence internal queues selection                                      | ip access-list-dscp trust     |
| Assign a name to a Policy List                                                                                  | ip access-list-name           |
| Add the name of an owner to a Policy List                                                                       | ip access-list-owner          |
| Delete an access-list element or a<br>Policy List                                                               | no ip access-list             |
| Activate a Policy List                                                                                          | ip access-group               |
| Deactivate a Policy List                                                                                        | no ip access-group            |
| Display the DSCP to CoS map of a policy-list                                                                    | show ip access-list dscp      |
| Set the list cookie for a specific policy list                                                                  | ip access-list-cookie         |
| Display an access-list                                                                                          | show ip access-list           |

| In order to                                                                              | Use the following command          |
|------------------------------------------------------------------------------------------|------------------------------------|
| View complete data of a policy list (including DSCP and composite operation tables)      | show ip access-lists details       |
| Activate the "simulate" process for a packet containing a specific field                 | ip simulate                        |
| Test the validity of a Policy List                                                       | validate-group                     |
| Display the active policy-list number                                                    | show ip access-group               |
| Display the DSCP to CoS map of a policy-list                                             | show ip access-list-dscp           |
| Display summary information regarding all configured access lists                        | show ip-access-list-summary        |
| Set the policy control source to either local or remote policy server                    | set qos policy source              |
| Copy current policy or policy and router configuration to the startup configuration file | copy running-config startup-config |

# Weighted Queuing

The Weighted Queuing feature allows the user to configure the priority scheme between the internal priority queues as "Strict Priority" or to configure it as a Weighted Round Robin (WRR) scheme, with user-configurable weights.

① If the queuing scheme commands are to be implemented on a P330-ML switch other than the stack master, a session should be opened to the relevant switch.

#### Implementation of Weighted Queuing in the P330-ML

The user is able to set the Priority scheme to either "Strict" or "WWR." The choice of option impacts in the following way on the operation of the modules installed in the stack.

- When the Priority scheme is set to "Strict":
  - Giga ports the Low priority queue will transmit only if the High priority queue has nothing to transmit.
  - P334T-ML 10/100 ports the Lower priority queue will transmit only if none of the Higher priority queue has nothing to transmit.
- When the Priority scheme is set to "WWR" with a weight factor 'n':
  - Giga ports the High priority queue will transmit 'n' packets for each packet that will be transmitted from the Low priority queue.
  - P334T-ML 10/100 ports The 4 queues will convert into 2 queues (High and Low); the High priority queue will transmit 'n' packets for each packet that will be transmitted from the Low priority queue.
- ① By default, the WWR weights between the four P334T-ML priority queues are 1:4:16:64.

## **Weighted Queuing CLI Commands**

The following table contains a list of the CLI commands for the Weighted Queuing feature. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                                                    | Use the following command  |
|--------------------------------------------------------------------------------|----------------------------|
| Switch between the Strict and Weighted queuing schemes, and to set the weights | set queuing scheme         |
| Returns the queuing scheme to WRR with the default weights                     | set default queuing scheme |
| Display the current queuing scheme settings                                    | show queuing scheme        |

# Port Classification

#### **Overview**

With the P330, you can classify any port as regular or valuable. Setting a port to valuable means that, in case of Ethernet link failure of that port, a link fault trap can be sent even when the port is disabled and a fast aging operation on the CAM table will be performed. This feature is particularly useful for the link/intermodule redundancy application, where you need to be informed about a link failure on the dormant port and resume traffic quickly.

#### **Port Classification CLI Commands**

| In order to                                               | Use the following command |
|-----------------------------------------------------------|---------------------------|
| Set the port classification to either regular or valuable | set port classification   |
| Display a port's classification                           | show port classification  |

# Stack Redundancy

In the unlikely event that a P330 switch or Octaplane link should fail, stack integrity is maintained if the redundant cable is connected to the stack. The broken link is bypassed and data transmission continues uninterrupted. The single management IP address for the stack is also preserved for uninterrupted management and monitoring. You can remove or replace any unit within the stack without disrupting operation or performing stack-level reconfiguration.

Since each P330 module has an integral SNMP agent, any module in a stack can serve as the stack Network Management Agent (NMA) while other NMAs act as redundant agents in "hot" standby. If the "live" NMA fails then a backup is activated instantaneously.

## Stack Health

The P330 software provides a Stack Health feature for verifying the integrity of the P330 stack cascading module and cables.

#### Overview

The Stack Health feature will identify defective modules and cables that may be installed in the P330 stack. The Stack Health algorithm separately checks all stacking modules and the Octaplane connections (including Redundant cable).

# Implementation of Stack Health in the P330 Family

When activating the Stack Health feature, the agents in all modules start sending special packets of various length via all stacking cables to one another. The Master module synchronizes this process and collects the results.

- When the Redundant Cable is present, the user is prompted to disconnect one
  of the short Octaplane cables and the redundant connection will be checked.
  Then, when prompted, the cable should be reconnected and the test will run a
  second time to check the regular Octaplane connections.
- The stack is reset after the Stack Health process completes.
- ① You should not load the stack with traffic during this test.
- ① If the stack health process fails, try to fasten or replace the stack cable between the modules where the failure has occurred. If the problem persists, try to fasten or replace either or both of the stacking modules.

# **Stack Health CLI Commands**

The following table contains a list of the CLI commands for the Stack Health feature. The rules of syntax and output examples are all set out in detail in the *Reference Guide*.

| In order to                                 | Use the following command |
|---------------------------------------------|---------------------------|
| Initiate the stack health testing procedure | set stack health          |

# Avaya P330 Layer 3 Features

#### Introduction

This section describes the Avaya P330 Layer 3 features. It provides the basic procedures for configuring the P330 for Layer 3 operation.

① Layer 3 features are relevant to P334T-ML operating in router mode. You must purchase a Layer 3 preconfigured P334T-ML module or a Routing License Key Certificate for the P334T-ML in order to operate the P334T-ML in router mode.

#### What is Routing?

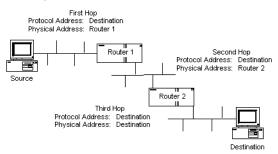
Routing enables transfer of a data packet from source to destination using a device called a router. Routing involves two basic activities:

- determining optimal routing paths
- transmitting information packets through an internetwork

Routers use routing tables to determine the routes to particular network destinations and, in some cases, metrics associated with those routes. Routers communicate with one another and maintain their routing tables through the transmission of a variety of messages.

The Routing Update Message is one such message. Routing Updates generally consist of all or a portion of a routing table. By analyzing Routing Updates from all routers, a router can build a detailed picture of network topology.

A Link-State Advertisement is another example of a message sent between routers. Link-State Advertisements inform other routers of the state of the sender's links. Link information can also be used to build a complete picture of the network's topology. Once the network topology is understood, routers can determine optimal routes to network destinations.


Routers can route only those messages that are transmitted in a routable protocol, such as IP or IPX. Messages in non-routable protocols, such as NetBIOS and LAT, cannot be routed, but they can be transferred from LAN to LAN via a bridge.

When a router receives a packet, it examines the packet's destination protocol address. The router then determines whether it knows how to forward the packet to the next hop. If the router does not know how to forward the packet, it typically drops the packet unless a default gateway is defined. If the router knows how to forward the packet, it changes the packet destination's physical address to that of the next hop and transmits the packet.

The next hop may or may not be the ultimate destination host. If not, the next hop is usually another router, which executes the same switching decision process. As the

packet moves through the internetwork, its physical address changes but its protocol address remains constant. This process is illustrated in the figure below.

Figure 12.1 Routing



The relation between the destination host's protocol address and its physical address is obtained by the routers using the ARP request/reply mechanism, and the information is stored within the ARP table in the router (see "The ARP Table" on page 111).

Within an enterprise, routers serve as an intranet backbone that interconnects all networks. This architecture strings several routers together via a high-speed LAN topology such as Fast Ethernet or Gigabit Ethernet. Within the global Internet, routers do all the packet switching in the backbones.

Another approach within an enterprise is the collapsed backbone, which uses a single router with a high-speed backplane to connect the subnets, making network management simpler and improving performance.

# **Routing Configuration**

#### **Forwarding**

The P330 forwards IP packets between IP networks. When it receives an IP packet through one of its interfaces, it forwards the packet through one of its interfaces. The P330 supports multinetting, enabling it to forward packets between IP subnets on the same VLAN as well as between different VLANs. Forwarding is performed through standard means in Router mode.

#### Multinetting (Multiple Subnets per VLAN)

In Router Mode, most applications such as RIP and OSPF, operate per IP interface. Other applications such as VRRP and DHCP/BOOTP Relay operate per VLAN. Configuration of these applications is done in the Interface mode. When there is only a single interface (subnet) per VLAN then system behavior is intuitive since a subnet and a VLAN are the same.

Multiple interfaces (subnets) per VLAN are more complicated. For example, if there are two interfaces over the same VLAN and you configure DHCP server on one interface, it will be used also for the second interface over the same VLAN. This behavior might be less expected and in some cases wrong.

In order to prevent misconfiguration and unexpected results, the P330 prevents configuration of VLAN-oriented commands on an interface unless explicitly requested by the user via the "enable vlan commands" CLI command.

Configuring the "enable vlan commands" on one interface defeats this option on other interfaces that belong to the same VLAN. This ensures that VLAN-oriented commands can be configured from one interface only.

In case there is only one interface over a VLAN, then VLAN oriented commands for this VLAN can be configured through the single interface without using the "enable vlan commands" command.

- ① VLAN-oriented commands that were configured affect the VLAN of the interface that was used at the time the command was issued.
- ① If the interface is moved to another VLAN (using the "ip vlan command") VLAN oriented configuration still relates to the original VLAN.

# IP Configuration

# **IP Configuration CLI Commands**

| In order to                                                         | Use the following command |
|---------------------------------------------------------------------|---------------------------|
| Enable IP routing                                                   | ip routing                |
| Set ICMP error messages                                             | ip icmp-errors            |
| Specify the format of netmasks in the show command output           | ip netmask-format         |
| Create and/or enter the Interface<br>Configuration Mode             | interface                 |
| Assign an IP address and mask to an interface                       | ip address                |
| Set the administrative state of an IP interface                     | ip admin-state            |
| Update the interface broadcast address                              | ip broadcast-address      |
| Define a default gateway (router)                                   | ip default-gateway        |
| Define the interface RIP route metric value                         | default-metric            |
| Enable net-directed broadcast forwarding                            | ip directed-broadcast     |
| Set the IP routing mode of the interface                            | ip routing-mode           |
| Enable or disable the sending of redirect messages on the interface | ip redirect               |
| Check host reachability and network connectivity                    | ping                      |
| Trace route utility                                                 | traceroute                |
| Create a router Layer 2 interface                                   | set vlan (Layer 3)        |
| Specify the VLAN on which an IP interface resides                   | ip vlan/ip vlan name      |

| In order to                                                                                                          | Use the following command |
|----------------------------------------------------------------------------------------------------------------------|---------------------------|
| Use this command before configuring VLAN-oriented parameters, when there is more than one interface on the same VLAN | enable vlan commands      |
| Display information about the IP unicast routing table                                                               | show ip route (Layer 3)   |
| Display information for an IP interface                                                                              | show ip interface         |
| Display the status of ICMP error messages                                                                            | show ip icmp              |
| Delete a Layer 2 Router interface                                                                                    | clear vlan                |

#### **Assigning Initial Router Parameters**

This section is only applicable if you either purchased a Layer 3 preconfigured P334T-ML module or purchased a Routing License Key Certificate for P334T-ML and activated the License Key. For information, on activating a Licence Key, see Obtaining and Activating a License Key below.

To configure the initial router parameters perform the following via the CLI:

- 1 Enter set device-mode router and press Enter. You will be prompted to reset the module.
- 2 Type y. Wait for the module to restart and for the CLI prompt to reappear.
- 3 Type **show device-mode** and press Enter to ensure that the module is in router mode.
- ① Assign the stack IP address as described in Assigning P330's IP Stack Address before you assign the Initial Router IP address.
- 4 To access Router commands from the Master module, type the command **session** <module number> **router** where <module number> is the location of the router module in the stack, and press Enter.

  The command prompt changes from P330-N> to Router-N#> where N is the number of the router in the stack (see P330 Sessions).
- 5 Type **configure** and press Enter. The prompt Router-N(configure)# appears.
- ① If the IP interface is on VLAN #1, continue with step 7.
- 6 Create the management/routing VLAN. Use the command set vlan <Vlan-id> name <Vlan-name> replacing <Vlan-id> by the

VLAN number, and <Vlan-name> by the VLAN name. Press Enter.

7 Create an IP interface name. Type:

Router(configure) # interface <interface-name> Press Enter.

The Router (configure-if:<interface-name>) # prompt appears.

8 Assign the IP address and network mask of the IP interface you have created. Use the command:

Router(configure-if:<interface-name>)# ip address <ipaddress> <netmask>

Press Enter

9 Assign a vlan to the IP interface you have created. Type: Assign a vlan to the IP interface you have created. Type:

Router(configure)# interface <interface-name># ip vlan
<vland-id>

Press Enter.

10 Type exit and press Enter. This returns you to the prompt:
Router(configure)#

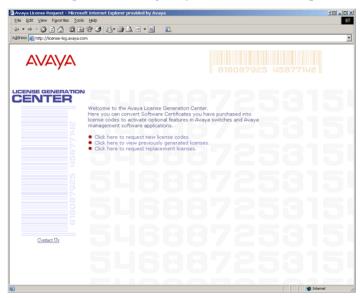
11 If the management station is not on the same subnet as the switch, configure a default gateway (static route). Use the command:

ip default-gateway <ip-address> and press Enter, replacing
<ip-address> with the IP address of the default gateway.

12 Save the configuration changes by typing **copy running-config startup-config** and press Enter.

## **Obtaining and Activating a License Key**

In order to benefit from Layer 3 Routing functionality, it is required that you either purchase a Layer 3 preconfigured P330-ML module or a Routing License Key Certificate for the P330-ML.


Each Certificate is specific for:

- The module type.
- The required feature.
- The number of devices.
- ① After you purchase a Routing Licence Key Certificate, you must obtain and activate a Routing License Key.

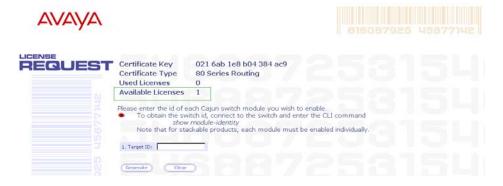
# Obtaining a Routing License Key

To obtain a License Key that enables routing features:

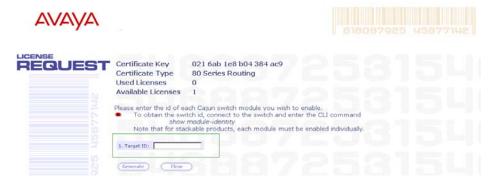
1 Go to <a href="http://license-lsg.avaya.com">http://license-lsg.avaya.com</a> and click "request new license".



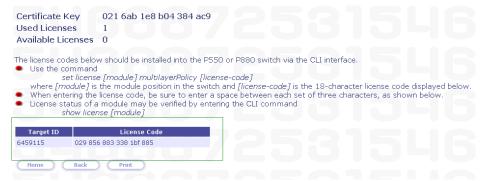
2 Enter the Certificate Key and Certificate Type.




3 Click Next.


4 Enter contact information (once per certificate)




- 5 Click Next.
- 6 View number of licenses left.



7 Enter serial number of the switch(es) or module. To identify serial numbers use the CLI command: show module-identity.



Click Generate. The feature-enabling license code is generated



### Activating a Routing License Key

To activate a Routing License Key:

Enter the acquired Routing License Key into the P330-ML module using the set license CLI command.

```
set license [module] [license] [featureName]
 where:
```

module - P330-ML module number (the location of the device in the stack)

license - license code

featureName - routing

and press Enter.

- Reset the module.
- Check that the license is activated using the CLI. Use the show license CLI command.

#### License Key CLI Commands

| In order to                                                  | Use the following command |
|--------------------------------------------------------------|---------------------------|
| Configure the feature license                                | set license               |
| Display the feature license                                  | show license              |
| Display the switch identity required for acquiring a license | show module-identity      |

# RIP (Routing Interchange Protocol) Configuration

#### RIP Overview

RIP is a "distance vector protocol"— that is, the router decides which path to use on distance (the number of intermediate hops). In order for this protocol to work correctly, all of the routers (and possibly the nodes) need to gather information on how to reach each destination in the Internet. The very simplicity of RIP has a disadvantage, however: it does not take into account the network bandwidth, physical cost, data priority, and so on.

The P330 supports the widely used RIP routing protocol (both RIPv1 and RIPv2). The RIPv1 protocol imposes some limitations on the network design with regard to subnetting. When operating RIPv1, you must not configure variable length subnet masks (VLMS). Each IP network must have a single mask, implying that all subnets in a given IP network are of the same size. Also, when operating RIPv1, you must not configure supernets, which are networks with a mask smaller than the natural net mask of the address class, such as 192.1.0.0 with mask 255.255.0.0 (smaller than the natural class C mask which is 255.255.255.0). For detailed descriptions of RIP refer to the standards and published literature.

RIPv2 is a new version of the RIP routing protocol but with some advantages over RIPv1. RIPv2 solves some of the problems associated with RIPv1. The most important change in RIPv2 is the addition of a subnet mask field which allows RIPv2 to support variable length subnets. RIPv2 also includes an authentication mechanism similar to the one used in OSPF.

The RIP version, 1 or 2, is configured per IP interface. Configuration must be homogenous on all routers on each subnet—there can not be both RIPv1 and RIPv2 routers configured on the same subnet. However, different IP interfaces of the P330 can be configured with different RIP versions (as long as all routers on the subnet are configured to the same version).

RIPv2 and RIPv1 are considered the same protocol with regard to redistribution to/from OSPF and static route preferences.

### RIP2

 $\mbox{RIP2}$  overcomes some of the shortcomings of RIP. The table below summarizes the differences between RIP and RIP2.

Table 12.1 DIfferences Between RIP and RIP2

| RIP2                                          | RIP                                   |
|-----------------------------------------------|---------------------------------------|
| Multicast addressing                          | Broadcast Addressing                  |
| Event-driven                                  | Timer-based (update every 30 seconds) |
| VLSM support (subnet information transmitted) | Fixed subnet masks                    |

### **RIP CLI Commands**

| In order to                                                    | Use the following command |
|----------------------------------------------------------------|---------------------------|
| Configure the Routing Information Protocol (RIP)               | router rip                |
| Specify a list of networks on which the RIP is running         | network                   |
| Redistribute routing information from other protocols into RIP | redistribute              |
| Specify the RIP version running on the interface basis         | ip rip rip-version        |
| Set the interface RIP route metric value                       | default-metric            |
| Set the RIP Send and Receive mode on an interface              | ip rip send-receive       |
| Enable learning of the default route received by the RIP       | ip rip default-route-mode |
| Enable split-horizon with poison-reverse on an interface       | ip rip poison-reverse     |
| Enable split-horizon mechanism                                 | ip rip split-horizon      |

| In order to                                                      | Use the following command  |
|------------------------------------------------------------------|----------------------------|
| Specify the type of authentication used in RIP Version 2 packets | ip rip authentication mode |
| Set the authentication string used on the interface              | ip rip authentication key  |
| Specify the RIP timers values                                    | timers basic               |

# OSPF (Open Shortest Path First) Configuration

#### **OSPF Overview**

OSPF is a routing protocol developed for IP networks based on the shortest path first or link-state algorithm. It was introduced to overcome the limitations of RIP in increasingly complex network designs.

OSPF is based on the cost of a particular path. In contrast, RIP uses hops as a path criterion. Also, updates are sent on a "need to know" basis rather than every 30 seconds as with RIP.

The advantage of shortest path first algorithms is that they result in smaller more frequent updates everywhere. They converge quickly, thus preventing such problems as routing loops and Count-to-Infinity (when routers continuously increment the hop count to a particular network). This stabilizes the network.

The disadvantage of shortest path first algorithms is that they require a lot of CPU power and memory.

Routers use link-state algorithms to send routing information to all nodes in an internetwork by calculating the shortest path to each node. This calculation is based on a topography of the Internet constructed by each node. Each router sends that portion of the routing table (keeps track of routes to particular network destinations) that describes the state of its own links, and it also sends the complete routing structure (topography).

The P330 supports the OSPF routing protocol. The P330 can serve as an OSPF Autonomous System Boundary Router (ASBR) by configuration of route redistribution. The P330 can be installed in the OSPF backbone area (area 0.0.0.0) or in any OSPF area that is part of a multiple areas network. However, the P330 cannot be configured to be an OSPF area border router itself.

The P330 supports the equal-cost multipath (ECMP) feature which allows load balancing by splitting traffic between several equivalent paths.

While OSPF can be activated with default values for each interface using a single command, many of the OSPF parameters are configurable.

For a detailed description of OSPF, refer to the OSPF standards and published literature.

# **OSPF CLI Commands**

| In order to                                                                     | Use the following command  |
|---------------------------------------------------------------------------------|----------------------------|
| Enable OSPF protocol                                                            | router ospf                |
| Configure the area ID of the router                                             | area                       |
| Configure router identity                                                       | ip ospf router-id          |
| Configure a passive ospf interface                                              | passive-interface          |
| Redistribute routing information from other protocols into OSPF                 | redistribute               |
| Configure the delay between runs of OSPF's SPF calculation                      | timers spf                 |
| Configure interface metric                                                      | ip ospf cost               |
| Specify the time interval between hellos the router sends                       | ip ospf hello-interval     |
| Configure the interval before declaring the neighbor as dead.                   | ip ospf dead-interval      |
| Configure interface priority used in DR election                                | ip ospf priority           |
| Configure the interface authentication password                                 | ip ospf authentication-key |
| Display general information about OSPF routing                                  | show ip ospf               |
| Display the OSPF-related interface information                                  | show ip ospf interface     |
| Display OSPF neighbor information on a per-interface basis                      | show ip ospf neighbor      |
| Display lists of information related to the OSPF database for a specific router | show ip ospf database      |
| Configure an interface as passive                                               | passive-interface          |

# Static Routing Configuration

#### Static Routing Overview

When dynamic routing protocols (RIP or OSPF) are not appropriate, you can manually configure *static routes* to indicate the next hop on the path to the final packet destination.

A static route becomes inactive if the interface over which it is defined is disabled. When the interface is enabled, the static route becomes active again. They are never timed-out, or lost over reboot, and can only be removed by manual configuration. Deletion (by configuration) of the IP interface deletes the static routes using this interface as well.

Static routes can only be configured for remote destinations, i.e. destinations that are reachable via another router as a next hop. The next hop router must belong to one of the directly attached networks for which the P330 has an IP interface. "Local" static routes, such as those that have no next hop, are not allowed.

Two kinds of static routes can be configured:

- High Preference static routes which are preferred to routes learned from any routing protocol
- Low Preference static routes which are used temporarily until the route is learned from a routing protocol. By default, a static route has Low Preference.

Static routes can be advertised by routing protocols (i.e., RIP, OSPF) as described under Route redistribution.

Static routes also support load-balancing similar to OSPF. A static route can be configured with multiple next hops so that traffic is split between these next hops.

This can be used for example to load-balance traffic between several firewalls which serve as the default gateway.

### **Static Routing Configuration CLI Commands**

| In order to                                                                       | Use the following command |
|-----------------------------------------------------------------------------------|---------------------------|
| Establish a static route                                                          | ip route                  |
| Remove a static route                                                             | no ip route               |
| Set the maximum number of route entries in the routing table                      | ip max-route-entries      |
| Set the maximum number of route entries in the routing table to the default value | no ip max-route-entries   |

| In order to                                                   | Use the following command |
|---------------------------------------------------------------|---------------------------|
| Define a default gateway (router)                             | ip default-gateway        |
| Remove the default gateway (router)                           | no ip default-gateway     |
| Delete all the dynamic routing entries from the Routing Table | clear ip route            |
| Display information about the IP unicast routing table        | show ip route             |
| Display a routing table for a destination address             | show ip route best-match  |
| Display the static routes                                     | show ip route static      |
| Display the number of routes known to the switch              | show ip route summary     |

#### **Route Preferences**

The routing table may contain routes from different sources. Routes to a certain destination may be learned independently from RIP and from OSPF, and at the same time, a static route can also be configured to the same destination. While metrics are used to choose between routes of the same protocol, protocol preferences are used to choose between routes of different protocols.

The preferences only apply to routes for the same destination IP address and mask. They do not override the longest-match choice. For example, a high-preference static default route will not be preferred over a RIP route to the subnet of the destination.

P330 protocol preferences are listed below from the most to the least preferred:

- 1 Local (directly attached net)
- 2 High-preference static (manually configured routes)
- 3 OSPF internal routes
- 4 RIP
- 5 OSPF external routes
- 6 Low-preference static (manually configured routes).

### Route Redistribution

Route redistribution is the interaction of multiple routing protocols. OSPF and RIP can be operated concurrently in the P330. In this case, the P330 can be configured to redistribute routes learned from one protocol into the domain of the other routing protocol. Similarly, static routes may be redistributed to RIP and to OSPF. Route redistribution involves metric changes and sometimes causes routing loops in the presence of other routes with incompatible schemes for route redistribution and route preferences. Be careful!

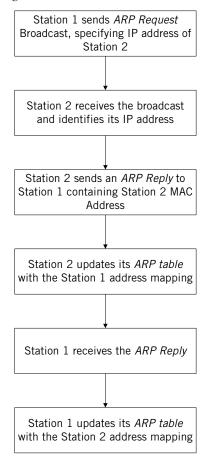
The the P330 scheme for metric translation in route redistribution is as follows:

- Static to RIP metric configurable (default 1)
- OSPF internal metric N to RIP metric 1
- OSPF external type 1 metric N to RIP metric 1
- OSPF external type 2 metric N to RIP metric N+1
- Static to OSPF external type 2, metric configurable (default 1)
- RIP metric N to OSPF external type 2, metric N
- Direct to OSPF external type 2, metric 1.

By default, the P330 does not redistribute routes between OSPF and RIP. Redistribution from one protocol to the other can be configured. By default, static routes are not redistributed to RIP and OSPF. The P330 allows the user to globally enable redistribution of static routes to RIP, and separately, to globally enable redistribution of static routes to OSPF. In addition, the P330 lets the user configure, on a per static route basis, whether the route is to be redistributed to RIP and OSPF, and what metric (in the range of 1-15). The default state is to enable the route to be redistributed at metric 1. When static routes are redistributed to OSPF, they are always redistributed as external type 2.

#### **Route Redistribution Commands**

| In order to                                           | Use the following command |
|-------------------------------------------------------|---------------------------|
| Redistribute routing information from other protocols | redistribute              |


# ARP (Address Resolution Protocol) Table Configuration

#### **ARP Overview**

IP logical network addresses are independent of physical addresses. Since the physical address must be used to convey data in the form of a frame from one device to another, a mechanism is required to acquire a destination device hardware address from its IP address. This mechanism/ability is called ARP (Address Resolution Protocol).

The following mechanism describes how a station builds an ARP Table:

Figure 12.2 Building an ARP Table



The ARP Table

The ARP table is used to store recently used pairs of IP/MAC addresses. This saves time and communication costs, since the host looks in the ARP cache first when transmitting a packet. If the information is not there, then the host sends an ARP Request (see Figure 12.2).

### **ARP CLI Commands**

| In order to                                                                   | Use the following command |
|-------------------------------------------------------------------------------|---------------------------|
| Add a permanent entry to the<br>Address Resolution Protocol (ARP)<br>cache    | arp                       |
| Configure the amount of time that an entry remains in the ARP cache           | arp timeout               |
| Set the amount of time that an entry remains in the ARP cache back to default | no arp timeout            |
| Set the maximum number of ARP cache entries allowed in the ARP cache          | ip max-arp-entries        |
| Set the maximum number of ARP cache back to default                           | no ip max-arp-entries     |
| Enable proxy ARP on an interface                                              | ip proxy-arp              |
| Disable proxy ARP on an interface                                             | no ip proxy-arp           |
| Delete all dynamic entries from the ARP cache and the IP route cache          | clear arp-cache           |
| Display the Address Resolution<br>Protocol (ARP) cache                        | show ip arp               |
| Display the IP address of a host, based on a known MAC address                | show ip reverse-arp       |

# BOOTP/DHCP (Dynamic Host Configuration Protocol) Relay Configuration

#### **BOOTP/DHCP Overview**

#### BOOTP

Short for Bootstrap Protocol, BootP is an Internet protocol that enables a diskless workstation to discover its own IP address, the IP address of a BOOTP server on the network, and a file to be loaded into memory to boot the machine. This enables the workstation to boot without requiring a hard or floppy disk drive. It is used when the user/station location changes frequently.

The protocol is defined by RFC 951.

#### **DHCP**

Short for Dynamic Host Configuration Protocol, DHCP assigns dynamic IP addresses to devices on a network. With dynamic addressing, a device can have a different IP address every time it connects to the network. In some systems, the device's IP address can even change while it is still connected. DHCP also supports a mix of static and dynamic IP addresses.

Dynamic addressing simplifies network administration because the software keeps track of IP addresses rather than requiring an administrator to manage the task. This means that a new computer can be added to a network without the hassle of manually assigning it a unique IP address. Many ISPs use dynamic IP addressing for dial-up users. However, dynamic addressing may not be desirable for a network server.

### DHCP/BOOTP Relay

The P330 supports the DHCP/BOOTP Relay Agent function. This is an application that accepts DHCP/BOOTP requests that are broadcast on one VLAN and sends them to a DHCP/BOOTP server that connects to another VLAN or a server that may be located across one or more routers that would otherwise not get the broadcast request. The relay agent handles the DHCP/BOOTP replies as well, transmitting them to the client directly or as broadcast, according to a flag in the reply message. Note that the same DHCP/BOOTP relay agent serves both the BOOTP and DHCP protocols.

When there is more than one IP interface on a VLAN, the P330 automatically chooses one of the IP interface's to determine the relay network. Alternatively, you can configure the relay networks that the P330 will use. If you have defined more than one network, the P330 selects the network to be relayed on a Round Robin basis.

The DHCP/BOOTP server uses the relayed network information to decide from which subnet the address should be allocated. Therefore, the DHCP/BOOTP server must be configured to allocate addresses from the relayed networks configured on the P330.

DHCP/BOOTP Relay in P330 is configurable per VLAN and allows you to specify two DHCP/BOOTP servers. In this case, it duplicates each request, and sends it to both servers. This provides redundancy and prevents the failure of a single server from blocking hosts from loading.

You can enable or disable or DHCP/BOOTP Relay in P330.

### **BOOTP/DHCP CLI Commands**

| In order to                                                                                | Use the following command                          |
|--------------------------------------------------------------------------------------------|----------------------------------------------------|
| Enable or disable relaying of bootp<br>and dhcp requests to the BOOTP/<br>DHCP server      | [no] ip bootp-dhcp relay (no - restores default)   |
| Add or remove a BOOTP/DHCP server to handle BOOTP/DHCP requests received by this interface | [no] ip bootp-dhcp server (no - restores default)  |
| Select the networks from which the bootp/dhcp server shall allocate an address             | [no] ip bootp-dhcp network (no - restores default) |

# **NetBIOS Re-broadcast Configuration**

#### **NetBIOS Overview**

Short for Network Basic Input Output System, an application programming interface (API) that augments the DOS BIOS by adding special functions for local-area networks (LANs). Almost all LANs for PCs are based on the NetBIOS. Some LAN manufacturers have even extended it, adding additional network capabilities.

The Avaya P330 can be configured to relay netbios UDP broadcast packets. This feature is used for applications such as WINS that use broadcast but may need to communicate with stations on other subnets or VLANs.

Configuration is performed on a per-interface basis. When a netbios broadcast packet arrives from an interface on which netbios rebroadcast is enabled, the packet is distributed to all other interfaces configured to rebroadcast netbios.

If the netbios packet is a net-directed broadcast (e.g., 149.49.255.255), the packet is relayed to all other interfaces on the list, and the IP destination of the packet is replaced by the appropriate interface broadcast address.

If the netbios broadcast packet is a limited broadcast (e.g., 255.255.255.255), it is relayed to all VLANs on which there are netbios-enabled interfaces. In that case, the destination IP address remains the limited broadcast address.

### **NetBIOS Re-broadcast Configuration CLI Commands**

| In order to                                       | Use the following command |
|---------------------------------------------------|---------------------------|
| Set NetBIOS rebroadcasts mode on an interface     | ip netbios-rebroadcast    |
| Disable NetBIOS rebroadcasts mode on an interface | no ip netbios-rebroadcast |

# VRRP (Virtual Router Redundancy Protocol) Configuration

#### **VRRP Overview**

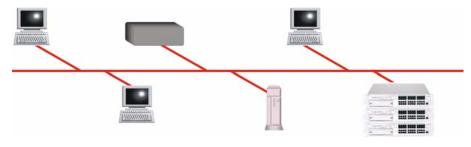
VRRP is an IETF protocol designed to support redundancy of routers on the LAN, as well as load balancing of traffic. VRRP is transparent to host stations, making it an ideal choice when redundancy, load balancing and ease of configuration are all required.

The concept underlying VRRP is that a router can backup other routers, in addition to performing its primary routing functions. This redundancy is achieved by introducing a virtual router. A virtual router is a routing entity associated with multiple physical routers. The routing functions of the virtual router are performed by one of the physical routers with which it is associated. This router is known as the master router. For each virtual router, VRRP selects a master router. If the selected master router fails, another router is selected as master router.

In VRRP, two or more physical routers can be associated with a virtual router, thus achieving extreme reliability. In a VRRP environment, host stations interact with the virtual router. They are not aware that this router is a virtual router, and they are not affected when a new router takes over the role of master router. This makes VRRP fully interoperable with every host station.

VRRP can be activated on an interface using a single command while allowing for the necessary fine-tuning of the many VRRP parameters. For a detailed description of VRRP, refer to VRRP standards and published literature.

### **VRRP Configuration Example 1**


Figure 12.3 VRRP Configuration Example (Case 1, Case 2)

Backup Router 2 VRID: 2, IP: 30.30.30.2 Ass. IP: 30.30.30.1 VMAC: 0005E000102 (VRID)

IP: 20.20.20.10 Main Router 1

PG: 20.20.20.10 VRID: 1, IP: 20.20.20.1=Ass. IP VMAC: 00005E000101 (VRID)

IP: 30.30.30.10 DG: 30.30.30.1



IP: 30.30.30.20

IP: 20.20.20.20

Backup Router 1 VRID: 1, IP: 20.20.20.2 Ass. IP: 20.20.20.1

VMAC: 00005E000101 (VRID)

Main Router 2

VRID: 2, IP: 30.30.30.1=Ass. IP VMAC: 00005E000102 (VRID)

#### Case#1

One main router on IP subnet 20.20.20.0 (P333R/P330-ML or any third-party router which supports VRRP) and a redundant router (more backup routers may be configured)

- The P330 itself must have an interface on the IP subnet (e.g. 20.20.20.2)
- All the routers are configured under the same VRID (Virtual Router ID- e.g.1) This configuration must be done per VLAN).
- The P330 requires that this VRID must not be used in the network (even in different VLAN)
- By the end of the routers configuration, and when the network is up, the main router for each virtual router will be elected according to this order of preference:
  - The virtual router IP address is also the router's interface IP address
  - It has the highest priority (you can configure this parameter)
  - It has the highest IP address if the previous cases do not apply

- The virtual router IP address needs to be configured as Default Gateway on the stations
- The MAC which will be advertised by the Main router as a response to the stations ARP requests, will be a 6 bytes Virtual MAC address in the format 00.00.5E.00.01.VRID.
- In the meantime, the redundant router will use a VRRP polling protocol (not ping as in SRRP) to check the Main router integrity in one second intervals (default). Otherwise it will be idle.
- If the Main router fails, a redundant router that has not received a response from four consecutive polling requests (default) will take over and start to advertise the same Virtual MAC for the ARP requests. Therefore the stations will not 'sense' any change neither in the configured DG nor in the MAC level.
- VRRP has no provisions for routing data base synchronization among the redundant routers. You need to perform this manually.

#### Case #2

- One router is Main on one IP subnet (e.g. <u>20.20.20.0</u>) and redundant on another (e.g. <u>30.30.30.30.0</u>)
- In this case each IP subnet must be in different VRID (e.g. 1 & 2)
- The above detailed information is valid for each router in its Main/Redundant roles.

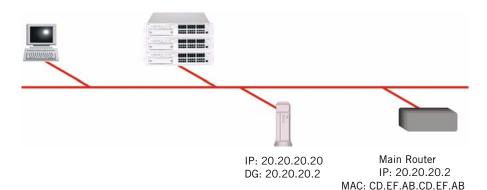
#### **VRRP CLI Commands**

| In order to                                                                             | Use the following command |
|-----------------------------------------------------------------------------------------|---------------------------|
| Enable or disable VRRP routing globally                                                 | router vrrp               |
| Create or delete a virtual router on the interface                                      | ip vrrp                   |
| Assign or remove an IP address to the virtual router                                    | ip vrrp address           |
| Set the virtual router advertisement timer value (in seconds) for the virtual router ID | ip vrrp timer             |
| Set the virtual router priority value used when selecting a master route                | ip vrrp priority          |

| In order to                                                                                                                                                                  | Use the following command   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Set or disable the virtual router simple password authentication for the virtual router ID.                                                                                  | Ip vrrp auth-key            |
| Configure or disable the router to preempt a lower priority master for the virtual router ID                                                                                 | Ip vrrp preempt             |
| Set the primary address that shall<br>be used as the source address of<br>VRRP packets for the virtual router<br>ID                                                          | Ip vrrp primary             |
| Accept or discard packets<br>addressed to the IP address(es)<br>associated with the virtual router,<br>such as ICMP, SNMP, and TELNET<br>(if it is not the IP address owner) | Ip vrrp override addr owner |
| Display VRRP information                                                                                                                                                     | show ip vrrp                |
| Display full VRRP-related information                                                                                                                                        | show ip vrrp detail         |

# SRRP Configuration

#### **SRRP Overview**


Avaya P330 IP SRRP redundancy capabilities provide automatic backup Layer 3 switching for IP stations. P330 units can be configured to back each other up so that if one fails the other will take over its forwarding functions. The backup P330 is not idle. As long as both P330 units are functional, traffic is shared between them. The P330 can back up another P330 unit or any other router.

A P330 unit configured to back up another unit monitors the other's status by polling it at configured intervals, and automatically detects when the other fails and when it becomes functional again. When detecting a failure, the backup P330 sends a gratuitous ARP message that causes all stations to send their IP traffic to the backup P330 MAC address instead of the failed unit MAC address. As long as it is an active backup resulting from the failure of the main unit, the backup P330 answers ARP requests for the main unit, providing its own MAC address

### **SRRP Configuration Example**

P330 - Backup Router IP: 20.20.20.10 IP: 20.20.20.1

DG: 20.20.20.2 MAC: AB.CD.EF.AB.CD.EF



- The P330 in SRRP mode can backup any other router
- The integrity of the main router is checked via periodic ping polling (default period is 3 sec.)
- When the backup router doesn't receive ping response after pre-configured
  period (default 12 sec.), the backup sends an ARP request (broadcast)
  advertising the failed router IP address with its' own MAC, so all the stations
  will start to direct their packets to the new MAC.

• The main difference between the VRRP and SRRP is the capability of the first protocol to provide mutual redundancy among any number of routers supporting the protocol while the SRRP is one direction protocol

### **SRRP CLI Commands**

| In order to                                                                                                    | Use the following command |
|----------------------------------------------------------------------------------------------------------------|---------------------------|
| Configure SRRP options, activate SRRP and enter the SRRP configuration mode                                    | router srrp               |
| Disable SRRP                                                                                                   | no router srrp            |
| Backup an additional interface of<br>the main router using the SRRP<br>application                             | ip srrp backup            |
| Configure the polling interval in seconds used by SRRP                                                         | poll-interval             |
| Set the polling interval used by SRRP back to default                                                          | no poll-interval          |
| Configure the timeout after which SRRP declares the main router dead if it does not reply to polling           | timeout                   |
| Set back to default the timeout after which SRRP declares the main router dead if it does not reply to polling | no timeout                |
| Display the SRRP configuration and status                                                                      | show ip srrp              |

# **Policy Configuration**

#### **Policy Configuration Overview**

The P330 supports QoS (Quality of Service) by using multiple priority levels and IEEE 802.1p priority tagging to ensure that data and voice receive the necessary levels of service.

The Avaya P330 can enforce QoS policy on routed packets and change their 802.1p priority, according to the following criteria:

- The packet protocol
- Matching the packet's source or destination IP address to the configured priority policy.
- Whether the packet source or destination TCP/UDP port number falls within a pre-defined range.

In addition, the 802.1p priority of a packet can be modified according to the DSCP value in the IP header based on the DSCP-802.1p mapping configured by the user.

The P330 supports Access Control policy. Access Control rules define how the P330 should handle routed packets. There are three possible ways to handle such packets:

- Forward the packet (Permit operation)
- Discard the packet (Deny operation)
- Discard the packet and notify the management station (Deny and Notify)

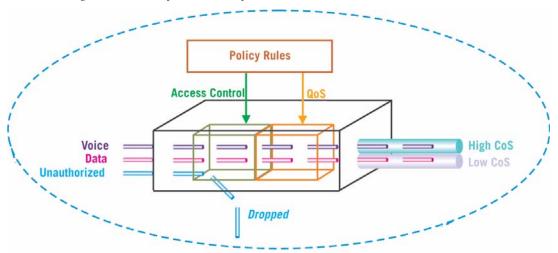
The Avaya P330 can enforce Access Control policy on each routed packet, according to the following criteria:

- Matching the packet's source or destination IP address to the configured Access Control policy.
- Determine if the packet protocol and source or destination TCP/UDP port number falls within a pre-defined range.
- Using the ACK bit of the TCP header.

The P330 uses policy lists containing both Access Control rules and QoS rules. The policy lists are ordered by rule indexing.

The Avaya P330 access control rules are set-up using the Command Line Interface and Avaya EZ2Rule central policy management application under Avaya<sup>TM</sup> MSNM (MultiService Network Manager).

## **Policy Configuration CLI Commands**


| In order to                                     | Use the following command |
|-------------------------------------------------|---------------------------|
| Set the default action for a given Policy List. | ip access-default-action  |

| In order to                                                                                            | Use the following command     |
|--------------------------------------------------------------------------------------------------------|-------------------------------|
| Create an access-list rule in a specific Access List.                                                  | ip access-list                |
| Set the source list, destination list, and destination module for copying an entire Policy List        | ip access-list-copy           |
| Set the DSCP-to-COS mapping. Based on range and action parameters, system will apply mapping to frames | ip access-list-dscp operation |
| Designates which original frame fields influence internal queues selection                             | ip access-list-dscp trust     |
| Assign a name to a Policy List                                                                         | ip access-list-name           |
| Add the name of an owner to a Policy List                                                              | ip access-list-owner          |
| Delete an access-list element or a<br>Policy List                                                      | no ip access-list             |
| Activate a Policy List                                                                                 | ip access-group               |
| Deactivate a Policy List                                                                               | no ip access-group            |
| Display the DSCP to CoS map of a policy-list                                                           | show ip access-list dscp      |
| Set the list cookie for a specific policy list                                                         | ip access-list-cookie         |
| Display an access list                                                                                 | show ip access-list           |
| Activate the "simulate" process for a packet containing a specific field                               | ip simulate                   |
| Test the validity of a Policy List                                                                     | validate-group                |
| Display the active policy-list number                                                                  | show ip access-group          |
| Display the DSCP to CoS map of a policy-list                                                           | show ip access-list-dscp      |

| In order to                                                                                 | Use the following command          |
|---------------------------------------------------------------------------------------------|------------------------------------|
| Display summary information regarding all configured access lists                           | show ip-access-list-summary        |
| Set the policy control source to either local or remote policy server                       | set qos policy source              |
| Copy current policy and router configuration to the startup configuration file              | copy running-config startup-config |
| Set whether a module enforces the active Policy List on all packets or only routed packets. | set policy-type                    |
| Show whether the module enforces the policy list on all packets or only on routed packets   | show policy-type                   |

# **Policy Configuration Example**

Figure 12.4 Avaya P330 Policy



# **Policy Configuration Example**

The following shows configuration of Access List 100:

1 Assigning priority 6 to all TCP traffic originating in network 149.49.0.0 – rule 1:

```
P330-1(super)# ip access-list 100 1 fwd6 tcp 149.49.0.0 0.0.255.255 any done!
```

2 Assigning priority 3 to all TCP traffic going to the host 172.44.17.1 – rule 2:

```
P330-1(super)# ip access-list 100 2 fwd3 tcp any host 172.44.17.1 done!
```

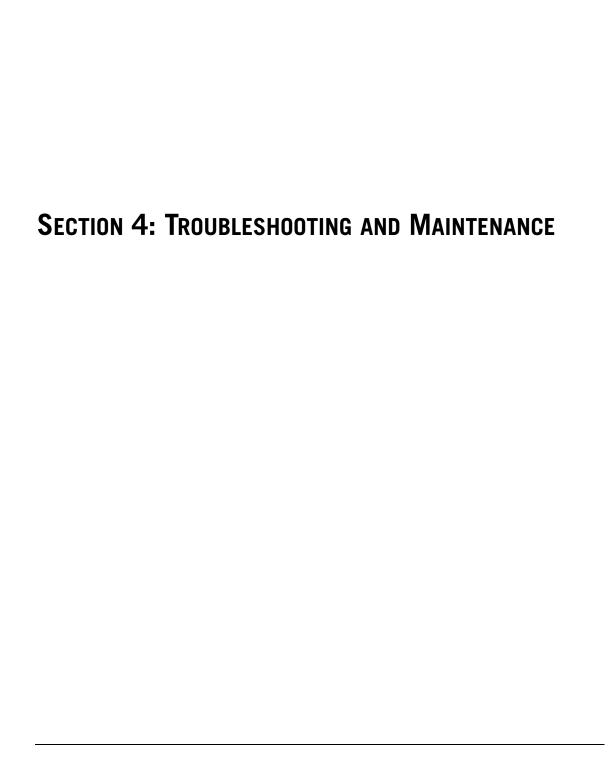
3 Denying Telnet sessions originated by the host 192.168.5.33 – rule 3:

```
P330-1(super)# ip access-list 100 3 deny tcp host 192.168.5.33 any eq 23 done!
```

# IP Fragmentation and Reassembly

#### IP Fragmentation and Reassembly Overview

The P330 supports IP Fragmentation and Reassembly. This feature allows the router to send and receive large IP packets where the underlying data link protocol constrains MTU (maximum transport unit).


IP fragmentation involves breaking a datagram into a number of pieces that can be reassembled later. The IP source, destination, identification, total length, and fragment offset fields, along with the "more" fragment and "don't" fragment flags in the IP header, are used for IP fragmentation and reassembly.

IP Fragmentation works as follows:

- IP packet is divided into fragments
- each fragment becomes its own IP packet
- each packet has same identifier, source, destination address
- fragments are usually not reassembled until final destination

### IP Fragmentation/Reassembly CLI Commands

| In order to                                                                                               | Use the following command |
|-----------------------------------------------------------------------------------------------------------|---------------------------|
| Clear the fragment database and restore its defaults                                                      | clear fragment            |
| Set the maximum number of fragments that can comprise a single IP packet                                  | fragment chain            |
| Set the maximum number of fragmented IP packets, destined for the router, to reassemble at any given time | fragment size             |
| Set the maximum number of seconds to reassemble a fragmented IP packet destined for the router.           | fragment timeout          |
| Display information regarding fragmented IP packets that are destined for the router                      | show fragment             |



# Troubleshooting the Installation

# Troubleshooting the Installation

This section will allow you to perform basic troubleshooting of the installation. If you are unable to solve the problem after following the procedures in this chapter, please contact Avaya Technical Support. Refer to "How to Contact Us" for full details.

Table 13.1 Troubleshooting

| Problem/Cause                                                                                                                                                                                                                             | Suggested Solution                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Switch does not power up                                                                                                                                                                                                                  |                                                                                                                                                         |
| AC power cord not inserted<br>or faulty                                                                                                                                                                                                   | <ul> <li>Check that the AC power cord is inserted correctly</li> <li>Replace the power cord</li> </ul>                                                  |
| If the cord is inserted correctly, check that the AC power source is working by connecting a different device in place of the P3330.  • If that device works, refer to the next step.  • If that device does not work, check the AC power |                                                                                                                                                         |
| P3330 AC power supply not<br>functioning                                                                                                                                                                                                  | <ul> <li>Use an optional BUPS (Backup Power Supply)</li> <li>Contact your local Avaya distributor. The power supply is not user-replaceable.</li> </ul> |
| Stacking not functioning                                                                                                                                                                                                                  |                                                                                                                                                         |
| Stacking modules not inserted correctly (LEDs on stacking module do not light)                                                                                                                                                            | Check that modules are installed correctly                                                                                                              |
| Octaplane cables not<br>installed correctly<br>(LEDs on stacking module<br>do not light)                                                                                                                                                  | <ul> <li>Check that the cables are inserted correctly</li> <li>Check that there are no cross-corrections</li> </ul>                                     |

# Maintenance

### Introduction

This section provides basic maintenance information for the switch and its components. For issues that are not covered in this chapter or in "Troubleshooting the Installation," please contact your Avaya representative.



**Caution:** Please refer to "Before You Install the P330" before undertaking any of the procedures detailed in this section.

# Replacing the Stacking Sub-module

To replace the X330STK-ML stacking sub-module:

- 1 Power to the switch may remain on.
- 2 Loosen the screws to the stacking sub-module by turning the knobs.
- 3 Take hold of the two knobs (one near each side of the front panel) and pull gently but firmly towards yourself.
- 4 Insert the new stacking sub-module gently into the slot, ensuring that the metal base plate is aligned with the guide rails.
  - The metal plate—*not* the PCB of the X330STK-ML— fits onto the guide rails.
- 5 Press the sub-module in firmly until it is completely inserted into the switch.



**Caution:** Ensure that the screws on the module are properly aligned with the holes in the chassis before tightening them.

6 Gently tighten the two screws on the side panel of the stacking module by turning the screws. Do not use excessive force when tightening the screws.

# Updating the Software

This section provides the basic procedure for downloading and updating the P330 system software.



**Caution:** Please refer to "Before You Install the P330" before undertaking any of the procedures detailed in this section.

### Software Download

You can perform software download using the CLI or Avaya Software Update Manager (part of the Avaya Integrated Manager Suite).

#### **Obtain Software Online**

You can download the firmware and Embedded Web Manager from the "Software Download" section at <a href="https://www.avaya.com/support">www.avaya.com/support</a>.

### **Downloading Software**

Download the firmware and Embedded Web Manager as follows:

Use the command in the Avaya P330 CLI:

copy tftp SW\_image <image-file> EW\_archive <filename> <ip>
<mod num>

| image-file | firmware image file name (full path)             |
|------------|--------------------------------------------------|
| filename   | Embedded Web Manager image file name (full path) |
| ip         | The IP address of the TFTP server                |
| mod_num    | Target module number                             |

Please see the CLI Chapters of the User's Guides for related information.

Please download both the new Avaya firmware and the new Embedded Web Manager versions. Whichever version of the firmware you decide to run, always be sure to match the correct firmware and Embedded Web Manager versions.

# Download New Version without Overwriting Existing Version

Sometimes it is desirable to upgrade to a new software version while retaining the option of booting from the previous version. The following process copies the previous version from memory Bank B to Bank A, and download the new version to Bank B. This process accomplishes the following:

- prevents the embedded web image-file from being downloaded into Bank A by providing a non-existent file name for the Embedded Web image file.
- preserves the old version in Bank A
- allows the user to boot from either Bank A or Bank B (i.e., using either the old or new software version)
- ① In normal operation, the Embedded Web file should be copied to Bank A, and the new software version should be downloaded to Bank B. This process copies the old software version to Bank A and the new software version to Bank B, and allows the user to boot from either version via the set boot bank command.

### To perform this process:

```
copy tftp SW_image <new_ver_file> EW_image <dummy_file_name>
<TFTP server IP addr> <module number>
```

### Example:

```
copy tftp SW_image c:\versions\p330\p333t EW_image dummy
149.49.138.170 1
```